Integrated heterogeneous graph and reinforcement learning enabled efficient scheduling for surface mount technology workshop DOI
Biao Zhang, Hongyan Sang, Chao Lu

и другие.

Information Sciences, Год журнала: 2025, Номер unknown, С. 122023 - 122023

Опубликована: Фев. 1, 2025

Язык: Английский

Evolutionary algorithm incorporating reinforcement learning for energy-conscious flexible job-shop scheduling problem with transportation and setup times DOI
Guohui Zhang, Shaofeng Yan, Xiaohui Song

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 107974 - 107974

Опубликована: Фев. 13, 2024

Язык: Английский

Процитировано

22

Manufacturing resource-based self-organizing scheduling using multi-agent system and deep reinforcement learning DOI

Yuxin Li,

Qihao Liu,

Xinyu Li

и другие.

Journal of Manufacturing Systems, Год журнала: 2025, Номер 79, С. 179 - 198

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

5

A reinforcement learning-based hyper-heuristic for AGV task assignment and route planning in parts-to-picker warehouses DOI
Kunpeng Li,

Tengbo Liu,

P.N. Ram Kumar

и другие.

Transportation Research Part E Logistics and Transportation Review, Год журнала: 2024, Номер 185, С. 103518 - 103518

Опубликована: Апрель 4, 2024

Язык: Английский

Процитировано

12

Dynamic Job-Shop Scheduling via Graph Attention Networks and Deep Reinforcement Learning DOI
Chien‐Liang Liu, Chun-Jan Tseng, P.S. Weng

и другие.

IEEE Transactions on Industrial Informatics, Год журнала: 2024, Номер 20(6), С. 8662 - 8672

Опубликована: Март 21, 2024

The dynamic job-shop scheduling problem (DJSSP) is an advanced form of the classical (JSSP), incorporating events that make it even more challenging. This article proposes a novel approach involving deep reinforcement learning and graph neural networks to solve this optimization problem. To effectively model DJSSP, we use disjunctive graph, designing specific node features reflect unique characteristics JSSP with machine breakdowns stochastic job arrivals. Our proposed method can dynamically adapt occurrence disruptions, ensuring accurately reflects current state environment. Furthermore, attention mechanism prioritize crucial nodes while discarding irrelevant ones. study applies learn embeddings, serving as input for actor–critic model. proximal policy then utilized train model, which assists in operations machines. We conducted extensive experiments static public environments. Experimental results indicate our superior state-of-the-art methods.

Язык: Английский

Процитировано

10

Deep reinforcement learning for machine scheduling: Methodology, the state-of-the-art, and future directions DOI

Maziyar Khadivi,

Todd Charter, Marjan Yaghoubi

и другие.

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 110856 - 110856

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Digital twin-driven dynamic scheduling for the assembly workshop of complex products with workers allocation DOI

Qinglin Gao,

Jianhua Liu,

Huiting Li

и другие.

Robotics and Computer-Integrated Manufacturing, Год журнала: 2024, Номер 89, С. 102786 - 102786

Опубликована: Май 25, 2024

Язык: Английский

Процитировано

8

Fast Pareto set approximation for multi-objective flexible job shop scheduling via parallel preference-conditioned graph reinforcement learning DOI
Chupeng Su, Cong Zhang, Chuang Wang

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 88, С. 101605 - 101605

Опубликована: Май 28, 2024

Язык: Английский

Процитировано

7

Ship pipe production optimization method for solving distributed heterogeneous energy-efficient flexible flowshop scheduling with mobile resource limitation DOI
Hua Xuan, Xiaofan Zhang, Yixuan Wu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126603 - 126603

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

An integrated framework of preventive maintenance and task scheduling for repairable multi-unit systems DOI
Wenyu Zhang, Jie Gan,

Shuguang He

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 247, С. 110129 - 110129

Опубликована: Апрель 4, 2024

Язык: Английский

Процитировано

6

Joint optimization of job scheduling, condition-based maintenance planning, and spare parts ordering for degrading production systems DOI
Wenyu Zhang,

Shuguang He,

Xiaohong Zhang

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 252, С. 110447 - 110447

Опубликована: Авг. 16, 2024

Язык: Английский

Процитировано

6