Robotics and Computer-Integrated Manufacturing, Год журнала: 2024, Номер 93, С. 102906 - 102906
Опубликована: Ноя. 30, 2024
Язык: Английский
Robotics and Computer-Integrated Manufacturing, Год журнала: 2024, Номер 93, С. 102906 - 102906
Опубликована: Ноя. 30, 2024
Язык: Английский
The International Journal of Advanced Manufacturing Technology, Год журнала: 2025, Номер unknown
Опубликована: Янв. 15, 2025
Язык: Английский
Процитировано
1Bioengineering, Год журнала: 2024, Номер 11(6), С. 606 - 606
Опубликована: Июнь 13, 2024
Digital twins are a relatively new form of digital modeling that has been gaining popularity in recent years. This is large part due to their ability update real time physical counterparts and connect across multiple devices. As result, much interest directed towards using the healthcare industry. Recent advancements smart wearable technologies have allowed for utilization human healthcare. Human can be generated biometric data from patient gathered wearables. These then used enhance care through variety means, such as simulated clinical trials, disease prediction, monitoring treatment progression remotely. revolutionary method still its infancy, such, there limited research on wearables generate applications. paper reviews literature pertaining twins, including methods, applications, challenges. The also presents conceptual creating body sensors.
Язык: Английский
Процитировано
6Journal of Manufacturing Systems, Год журнала: 2024, Номер 77, С. 228 - 245
Опубликована: Сен. 26, 2024
Язык: Английский
Процитировано
6Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102907 - 102907
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
5Computers & Industrial Engineering, Год журнала: 2024, Номер 194, С. 110418 - 110418
Опубликована: Июль 27, 2024
Язык: Английский
Процитировано
4World Journal of Advanced Research and Reviews, Год журнала: 2023, Номер 21(3), С. 2060 - 2072
Опубликована: Март 30, 2023
This review explores the transformative impact of artificial intelligence (AI) on manufacturing robotics, elucidating a comprehensive overview applications and emerging trends within realm smart manufacturing. As industries increasingly embrace Industry 4.0 principles, integration AI into robots has become pivotal for enhancing efficiency, flexibility, adaptability. The synergy robotics resulted in plethora that redefine traditional processes. Machine learning algorithms empower with predictive maintenance capabilities, allowing them to anticipate address equipment issues before they escalate. Computer vision technologies enable perceive interpret visual information, their ability handle complex tasks such as quality inspection object recognition. AI-driven collaborative robots, or cobots, seamlessly interact human workers, optimizing workflow productivity. Furthermore, AI-enhanced play crucial role autonomous material handling, logistics, supply chain management, streamlining operations diverse environments. Recent underscore dynamic evolution this field. Edge computing is gaining prominence, process data locally respond real-time, minimizing latency overall system performance. advent reinforcement empowered adapt optimize actions based environments, leading improved flexibility digital twins facilitates virtual simulations, enabling manufacturers model analyze behavior robotic systems physical implementation. Explainable critical trend, ensuring transparency interpretability decision-making processes systems. represents paradigm shift, revolutionizing practices. highlights myriad shaping landscape robotics. continue invest technologies, poised drive unprecedented advancements quality, agility sector.
Язык: Английский
Процитировано
9Electronics, Год журнала: 2024, Номер 13(16), С. 3303 - 3303
Опубликована: Авг. 20, 2024
The concept of digital twins has been in the field for a long time, constantly challenging specification, modeling, design, implementation, and exploitation complex cyber–physical systems. Despite various foundations, standards, platforms systems engineering, there are ongoing challenges with verification validation methodology. This study aims to establish generic framework that addresses aspects twinning. multifaceted nature problem requires raising abstraction level both real (actual) virtual domains, effective dissemination information resources, design inspired by validation. proposed combines quintuple helix model operational domains twin, solution implementation execution domain as bridge links them. Verification dimensions follow meta object facility layers (instance, model, meta-model, meta-meta-model) mapping over five helices. Embedding complexity reduction mechanisms builds suite extendible verifiable twinning simulation real-time scenarios. application main conceptual real-world example aids this research’s intentions. is matter further research endeavors.
Язык: Английский
Процитировано
3Computers & Industrial Engineering, Год журнала: 2024, Номер 198, С. 110616 - 110616
Опубликована: Окт. 2, 2024
Язык: Английский
Процитировано
3Ingeniería y Competitividad, Год журнала: 2025, Номер 27(1)
Опубликована: Фев. 6, 2025
Introducción: este estudio presenta la aplicación de una metodología aprendizaje basada en juegos para apoyar valoración y evaluación los resultados educación superior. A través alineación elementos macrocurriculares microcurriculares, enfoque busca mejorar las prácticas pedagógicas mediante el uso espacios interactivos herramientas tecnológicas, con objetivo reforzar objetivos educativos del programa.Objetivo: principal es diseñar e implementar actividad pedagógica que utilice serios evaluar capacidad estudiantes identificar, formular resolver problemas organizacionales complejos aplicando principios ingeniería contexto un curso optimización.Metodología: propuesta incluye programa propósito juego, consideración perfiles jugadores, selección alternativas viables, diseño mecánicas juego integración conocimientos específicos, desarrollo prototipos instrumentos percepción. En caso se emplean aula fomentar resolución complejos.Resultados: muestran comparación métricas rendimiento equipos, evaluadas términos utilidad neta, destacando diferencias entre equipos solución óptima derivada técnicas optimización. Además, exploran escenarios colaborativo, enfatizando beneficios trabajo equipo competencia.Conclusiones: conclusiones validan hipótesis basado potencia consecución aprendizaje, fortaleciendo proceso educativo estudiantes. evalúa usabilidad experiencia jugador efectividad o refuerzo disciplinares transversales encuesta
Процитировано
0Journal of Manufacturing Systems, Год журнала: 2025, Номер 79, С. 383 - 397
Опубликована: Фев. 7, 2025
Язык: Английский
Процитировано
0