
Neurosurgical Review, Год журнала: 2025, Номер 48(1)
Опубликована: Апрель 29, 2025
Язык: Английский
Neurosurgical Review, Год журнала: 2025, Номер 48(1)
Опубликована: Апрель 29, 2025
Язык: Английский
Neurosurgical Review, Год журнала: 2025, Номер 48(1)
Опубликована: Фев. 15, 2025
Язык: Английский
Процитировано
1Deleted Journal, Год журнала: 2025, Номер unknown
Опубликована: Апрель 9, 2025
This study aimed to develop and validate a predictive model for early recurrence of high-grade glioma (HGG) within 180 days, assess the prognostic value preoperative postoperative temporalis muscle metrics (area thickness), explore their significance in follow-up. Seventy-one molecularly confirmed HGG patients were included, with data sourced from local TCIA (The Cancer Imaging Archive) RHUH-GBM (Río Hortega University Hospital Glioblastoma) dataset. Tumor segmentation was performed using deep learning, radiomic features extracted following comparison manual segmentation. Feature selection conducted mutual information recursive feature elimination. A comprehensive integrating 3D tumor radiomics developed compared tumor-only identify optimal framework. SHAP analysis used evaluate interpretability importance. The TM_Tumor_HistGradientBoosting model, incorporating 16 including metrics, outperformed accuracy (0.89), recall (0.87), F1 score (0.88). highlighted that cross-sectional area strongly associated risk, while thickness significantly contributed prediction. Combining MRI substantially improved prediction HGG. Temporalis serve as objective sustainable indicators significant clinical
Язык: Английский
Процитировано
0Clinical Neurology and Neurosurgery, Год журнала: 2025, Номер 253, С. 108899 - 108899
Опубликована: Апрель 17, 2025
Язык: Английский
Процитировано
0Neurosurgical Review, Год журнала: 2025, Номер 48(1)
Опубликована: Апрель 29, 2025
Язык: Английский
Процитировано
0