Automated Ischemic Stroke Classification from MRI Scans: Using a Vision Transformer Approach DOI Open Access
Wafae Abbaoui, Sara Retal, Soumia Ziti

и другие.

Journal of Clinical Medicine, Год журнала: 2024, Номер 13(8), С. 2323 - 2323

Опубликована: Апрель 17, 2024

Background: This study evaluates the performance of a vision transformer (ViT) model, ViT-b16, in classifying ischemic stroke cases from Moroccan MRI scans and compares it to Visual Geometry Group 16 (VGG-16) model used prior study. Methods: A dataset 342 scans, categorized into ‘Normal’ ’Stroke’ classes, underwent preprocessing using TensorFlow’s tf.data API. Results: The ViT-b16 was trained evaluated, yielding an impressive accuracy 97.59%, surpassing VGG-16 model’s 90% accuracy. Conclusions: research highlights superior classification capabilities for diagnosis, contributing field medical image analysis. By showcasing efficacy advanced deep learning architectures, particularly context this underscores potential real-world clinical applications. Ultimately, our findings emphasize importance further exploration AI-based diagnostic tools improving healthcare outcomes.

Язык: Английский

Glaucoma Classification using Light Vision Transformer DOI Creative Commons

Piyush Bhushan Singh,

Pawan Singh, Harsh Dev

и другие.

EAI Endorsed Transactions on Pervasive Health and Technology, Год журнала: 2023, Номер 9

Опубликована: Сен. 21, 2023

INTRODUCTION: Nowadays one of the primary causes permanent blindness is glaucoma. Due to trade-offs, it makes in terms portability, size, and cost, fundus imaging most widely used glaucoma screening technique. OBJECTIVES:To boost accuracy,focusing on less execution time, resources consumption, we have proposed a vision transformer-based model with data pre-processing techniques which fix classification problems. METHODS: Convolution “local” technique by CNNs that restricted limited area around an image. Self-attention, Vision Transformers, “global” action since gathers from whole This possible for ViT successfully collect far-off semantic relevance Several optimizers, including Adamax, SGD, RMSprop, Adadelta, Adafactor, Nadam, Adagrad, were studied this paper. We trained tested Transformer IEEE Fundus image dataset having 1750 Healthy Glaucoma images. Additionally, was preprocessed using resizing, auto-rotation, auto-adjust contrast adaptive equalization. RESULTS: Results also show Nadam Optimizer increased accuracy up 97% equalized preprocessing followed auto rotate resizing operations. CONCLUSION: The experimental findings shows transformer based spurred revolution computer reduced time training classification.

Язык: Английский

Процитировано

10

Artificial intelligence for computer aided detection of pneumoconiosis: A succinct review since 1974 DOI
Faisel Mushtaq,

S.K. Bhattacharjee,

Sandeep Mandia

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108516 - 108516

Опубликована: Май 2, 2024

Язык: Английский

Процитировано

3

An Explainable Contrastive-based Dilated Convolutional Network with Transformer for pediatric pneumonia detection DOI
Chandravardhan Singh Raghaw, Parth Shirish Bhore,

Mohammad Zia Ur Rehman

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 167, С. 112258 - 112258

Опубликована: Сен. 19, 2024

Язык: Английский

Процитировано

3

Deep learning approaches for classification tasks in medical X-ray, MRI, and ultrasound images: a scoping review DOI Creative Commons
Hafsa Laçi, Kozeta Sevrani, Sarfraz Iqbal

и другие.

BMC Medical Imaging, Год журнала: 2025, Номер 25(1)

Опубликована: Май 7, 2025

Язык: Английский

Процитировано

0

Automated Ischemic Stroke Classification from MRI Scans: Using a Vision Transformer Approach DOI Open Access
Wafae Abbaoui, Sara Retal, Soumia Ziti

и другие.

Journal of Clinical Medicine, Год журнала: 2024, Номер 13(8), С. 2323 - 2323

Опубликована: Апрель 17, 2024

Background: This study evaluates the performance of a vision transformer (ViT) model, ViT-b16, in classifying ischemic stroke cases from Moroccan MRI scans and compares it to Visual Geometry Group 16 (VGG-16) model used prior study. Methods: A dataset 342 scans, categorized into ‘Normal’ ’Stroke’ classes, underwent preprocessing using TensorFlow’s tf.data API. Results: The ViT-b16 was trained evaluated, yielding an impressive accuracy 97.59%, surpassing VGG-16 model’s 90% accuracy. Conclusions: research highlights superior classification capabilities for diagnosis, contributing field medical image analysis. By showcasing efficacy advanced deep learning architectures, particularly context this underscores potential real-world clinical applications. Ultimately, our findings emphasize importance further exploration AI-based diagnostic tools improving healthcare outcomes.

Язык: Английский

Процитировано

3