Goal-oriented representations in the human hippocampus during planning and navigation DOI Creative Commons
Jordan Crivelli-Decker, Alex Clarke, Seongmin A. Park

и другие.

Nature Communications, Год журнала: 2023, Номер 14(1)

Опубликована: Май 23, 2023

Abstract Recent work in cognitive and systems neuroscience has suggested that the hippocampus might support planning, imagination, navigation by forming maps capture abstract structure of physical spaces, tasks, situations. Navigation involves disambiguating similar contexts, planning execution a sequence decisions to reach goal. Here, we examine hippocampal activity patterns humans during goal-directed task investigate how contextual goal information are incorporated construction navigational plans. During pattern similarity is enhanced across routes share context navigation, observe prospective activation reflects retrieval related key-decision point. These results suggest that, rather than simply representing overlapping associations or state transitions, shaped goals.

Язык: Английский

The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation DOI Creative Commons
James C. R. Whittington, Timothy Müller, Shirley Mark

и другие.

Cell, Год журнала: 2020, Номер 183(5), С. 1249 - 1263.e23

Опубликована: Ноя. 1, 2020

The hippocampal-entorhinal system is important for spatial and relational memory tasks. We formally link these domains, provide a mechanistic understanding of the hippocampal role in generalization, offer unifying principles underlying many entorhinal cell types. propose medial cells form basis describing structural knowledge, this with sensory representations. Adopting principles, we introduce Tolman-Eichenbaum machine (TEM). After learning, TEM display diverse properties resembling apparently bespoke responses, such as grid, band, border, object-vector cells. include place landmark that remap between environments. Crucially, also aligns empirically recorded representations complex non-spatial generates predictions remapping not random previously believed; rather, knowledge preserved across confirm transfer over simultaneously grid

Язык: Английский

Процитировано

514

Structuring Knowledge with Cognitive Maps and Cognitive Graphs DOI Creative Commons
Michael Peer, Iva K. Brunec, Nora S. Newcombe

и другие.

Trends in Cognitive Sciences, Год журнала: 2020, Номер 25(1), С. 37 - 54

Опубликована: Ноя. 26, 2020

Язык: Английский

Процитировано

222

Deep Reinforcement Learning and Its Neuroscientific Implications DOI Creative Commons
Matthew Botvinick, Jane X. Wang, Will Dabney

и другие.

Neuron, Год журнала: 2020, Номер 107(4), С. 603 - 616

Опубликована: Июль 13, 2020

Язык: Английский

Процитировано

205

How to build a cognitive map DOI
James C. R. Whittington,

David McCaffary,

Jacob J. W. Bakermans

и другие.

Nature Neuroscience, Год журнала: 2022, Номер 25(10), С. 1257 - 1272

Опубликована: Сен. 26, 2022

Язык: Английский

Процитировано

141

Towards Continual Reinforcement Learning: A Review and Perspectives DOI Creative Commons
Khimya Khetarpal,

Matthew Riemer,

Irina Rish

и другие.

Journal of Artificial Intelligence Research, Год журнала: 2022, Номер 75, С. 1401 - 1476

Опубликована: Дек. 22, 2022

In this article, we aim to provide a literature review of different formulations and approaches continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We begin by discussing our perspective on why RL is natural fit for studying learning. then taxonomy mathematically characterizing two key properties non-stationarity, namely, the scope driver non-stationarity. This offers unified view various formulations. Next, present approaches. go discuss evaluation agents, providing an overview benchmarks used in important metrics understanding agent performance. Finally, highlight open problems challenges bridging gap between current state findings neuroscience. While still its early days, study has promise develop better incremental learners that can function increasingly realistic applications where non-stationarity plays vital role. These include such those fields healthcare, education, logistics, robotics.

Язык: Английский

Процитировано

119

Spatial goal coding in the hippocampal formation DOI Creative Commons
Nils Nyberg, Éléonore Duvelle, Caswell Barry

и другие.

Neuron, Год журнала: 2022, Номер 110(3), С. 394 - 422

Опубликована: Янв. 14, 2022

Язык: Английский

Процитировано

119

Navigating for reward DOI
Marielena Sosa, Lisa M. Giocomo

Nature reviews. Neuroscience, Год журнала: 2021, Номер 22(8), С. 472 - 487

Опубликована: Июль 6, 2021

Язык: Английский

Процитировано

112

Taking stock of value in the orbitofrontal cortex DOI

Eric B. Knudsen,

Joni D. Wallis

Nature reviews. Neuroscience, Год журнала: 2022, Номер 23(7), С. 428 - 438

Опубликована: Апрель 25, 2022

Язык: Английский

Процитировано

93

Predictive maps in rats and humans for spatial navigation DOI Creative Commons
William de Cothi, Nils Nyberg, Eva‐Maria Griesbauer

и другие.

Current Biology, Год журнала: 2022, Номер 32(17), С. 3676 - 3689.e5

Опубликована: Июль 20, 2022

tested humans, rats, and RL agents on a novel modular maze d Humans rats were remarkably similar in their choice of trajectories Both species most to utilizing SR also displayed features model-based planning early trials

Язык: Английский

Процитировано

72

Replay in Deep Learning: Current Approaches and Missing Biological Elements DOI
Tyler L. Hayes, Giri P. Krishnan, Maxim Bazhenov

и другие.

Neural Computation, Год журнала: 2021, Номер unknown, С. 1 - 44

Опубликована: Авг. 30, 2021

Replay is the reactivation of one or more neural patterns that are similar to activation experienced during past waking experiences. was first observed in biological networks sleep, and it now thought play a critical role memory formation, retrieval, consolidation. Replay-like mechanisms have been incorporated deep artificial learn over time avoid catastrophic forgetting previous knowledge. algorithms successfully used wide range learning methods within supervised, unsupervised, reinforcement paradigms. In this letter, we provide comprehensive comparison between replay mammalian brain networks. We identify multiple aspects missing systems hypothesize how they could be improve

Язык: Английский

Процитировано

86