Computers and Electronics in Agriculture, Год журнала: 2024, Номер 229, С. 109817 - 109817
Опубликована: Дек. 13, 2024
Язык: Английский
Computers and Electronics in Agriculture, Год журнала: 2024, Номер 229, С. 109817 - 109817
Опубликована: Дек. 13, 2024
Язык: Английский
Plants, Год журнала: 2024, Номер 13(13), С. 1722 - 1722
Опубликована: Июнь 21, 2024
Fusarium head blight (FHB) is a major threat to global wheat production. Recent reviews of FHB focused on pathology or comprehensive prevention and lacked summary advanced detection techniques. Unlike traditional management methods, based various imaging technologies has the obvious advantages high degree automation efficiency. With rapid development computer vision deep learning technology, number related research grown explosively in recent years. This review begins with an overview epidemic mechanisms changes characteristics infected wheat. On this basis, scales are divided into microscopic, medium, submacroscopic, macroscopic scales. Then, we outline relevant articles, algorithms, methodologies about from disease qualitative analysis summarize potential difficulties practicalization corresponding technology. paper could provide researchers more targeted technical support breakthrough directions. Additionally, provides ideal application mode multi-scale then examines trend all-scale system, which paved way for fusion non-destructive imaging.
Язык: Английский
Процитировано
7Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126764 - 126764
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Expert Systems with Applications, Год журнала: 2025, Номер 274, С. 126896 - 126896
Опубликована: Фев. 24, 2025
Язык: Английский
Процитировано
1Computers and Electronics in Agriculture, Год журнала: 2024, Номер 227, С. 109472 - 109472
Опубликована: Окт. 3, 2024
Язык: Английский
Процитировано
4Journal of Food Composition and Analysis, Год журнала: 2025, Номер unknown, С. 107258 - 107258
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Computers and Electronics in Agriculture, Год журнала: 2025, Номер 231, С. 109972 - 109972
Опубликована: Янв. 28, 2025
Язык: Английский
Процитировано
0Agrochemicals, Год журнала: 2025, Номер 4(1), С. 4 - 4
Опубликована: Март 4, 2025
Wheat pathogens pose a significant risk to global wheat production, with climate change further complicating disease dynamics. Effective management requires combination of genetic resistance, cultural practices, and careful use chemical controls. Ongoing research adaptation changing environmental conditions are crucial for sustaining yields food security. Based on selective academic literature retrieved from the Scopus database analyzed by bibliographic software such as VOSviewer we discussed focused various aspects current future strategies managing major diseases Tan spot, Septoria tritici blotch, Fusarium head blight, etc. Chemical methods, fungicides, can be effective but not always preferred. Instead, agronomic practices like crop rotation tillage play role in reducing both incidence severity these diseases. Moreover, adopting resistance is essential management.
Язык: Английский
Процитировано
0International journal of agricultural and biological engineering, Год журнала: 2024, Номер 17(2), С. 240 - 249
Опубликована: Янв. 1, 2024
The breeding and selection of resistant varieties is an effective way to minimize wheat Fusarium head blight (FHB) hazards, so it important identify evaluate varieties. traditional resistance phenotype identification still largely dependent on time-consuming manual methods. In this paper, the method for evaluating FHB in ears was optimized based fusion feature wavelength images hyperspectral imaging system Faster R-CNN algorithm. spectral data from 400-1000 nm were preprocessed by multiple scattering correction (MSC) Three wavelengths (553 nm, 682 714 nm) selected analyzing X-loading weights (XLW) according absolute value peaks troughs different principal component (PC) load coefficient curves. Then, methods three explored with weight coefficients. trained RGB datasets VGG16, AlexNet, ZFNet, ResNet-50 networks separately. other detection models SSD, YOLOv5, YOLOv7, CenterNet, RetinaNet used compare model. As a result, VGG16 best mAP (mean Average Precision) ranged 97.7% 98.8%. model showed performance Fusion Image-1 dataset. Moreover, achieved average accuracy 99.00%, which 23.89%, 1.21%, 0.75%, 0.62%, 8.46% higher than models. Therefore, demonstrated that image dataset proposed paper feasible rapid evaluation resistance. This study provided ensuring food security. Key words: Fusariumhead blight, evaluation, band fusion, deep learning, DOI: 10.25165/j.ijabe.20241702.8269 Citation: Liang K, Ren Z Z, Song J P, Yuan R, Zhang Q. Wheat assessment using bandimage learning. Int Agric & Biol Eng, 2024; 17(2): 240–249.
Язык: Английский
Процитировано
2Agronomy, Год журнала: 2024, Номер 14(12), С. 3064 - 3064
Опубликована: Дек. 22, 2024
Bacterial blight of soybean (BBS), caused by Pseudomonas syringae pv. glycinea, is one the most devastating diseases in with significant yield losses ranging from 4% to 40%. The timely detection BBS foundation for disease control. However, traditional identification methods are inefficient and rely heavily on expert knowledge. Existing automated approaches have not achieved high accuracy natural environments often require advanced equipment extensive training, limiting their practicality adaptability. To overcome these challenges, we propose LeafDPN, an improved Dual-Path Network model enhanced Vision Transformer blocks forward propagation function SE ConvBNLayer. These enhancements model’s accuracy, receptive field, feature expression capabilities. Experiments conducted a self-constructed dataset 864 expert-labeled images across three types demonstrated that LeafDPN 98.96% shorted iteration time just 24 epochs. It outperformed 14 baseline models like HRNet EfficientNet terms training efficiency, resource consumption. In addition, proposed has potential be applied other plant based available datasets.
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Процитировано
0