Machine-Learning-Based Frameworks for Reliable and Sustainable Crop Forecasting DOI Open Access
Khushwant Singh, Mohit Yadav, Dheerdhwaj Barak

и другие.

Sustainability, Год журнала: 2025, Номер 17(10), С. 4711 - 4711

Опубликована: Май 20, 2025

Fueled by scientific innovations and data-driven approaches, accurate agriculture has arisen as a transformative sector in contemporary agriculture. The present investigation provides summary of modern improvements machine-learning (ML) strategies utilized for crop prediction, accompanied performance exploration models. It examines the amalgamation sophisticated technologies, cooperative objectives, methodologies designed to address obstacles conventional study possibilities intricacies precision analyzing various models deep learning, machine ensemble reinforcement learning. Highlighting significance worldwide collaboration data-sharing activities elucidates evolving landscape farming industry indicates prospective advancements sector.

Язык: Английский

Detection and tracking of oestrus dairy cows based on improved YOLOv8n and TransT models DOI
Zheng Wang, Hongxing Deng, Shujin Zhang

и другие.

Biosystems Engineering, Год журнала: 2025, Номер 252, С. 61 - 76

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Field-Deployed Spectroscopy from 350 to 2500 nm: A Promising Technique for Early Identification of Powdery Mildew Disease (Erysiphe necator) in Vineyards DOI Creative Commons
Sergio Vélez, Enrique Barajas, J.A. Rubio

и другие.

Agronomy, Год журнала: 2024, Номер 14(3), С. 634 - 634

Опубликована: Март 21, 2024

This study explores spectroscopy in the 350 to 2500 nm range for detecting powdery mildew (Erysiphe necator) grapevine leaves, crucial precision agriculture and sustainable vineyard management. In a controlled experimental setting, spectral reflectance on leaves with varying infestation levels was measured using FieldSpec 4 spectroradiometer during July September. A detailed assessment conducted following guidelines recommended by European Mediterranean Plant Protection Organization (EPPO) quantify level of infestation; categorising into five distinct grades based percentage leaf surface area affected. Subsequently, data were collected contact probe tungsten halogen bulb connected spectroradiometer, taking three measurements across different areas each leaf. Partial Least Squares Regression (PLSR) analysis yielded coefficients determination R2 = 0.74 0.71, Root Mean Square Errors (RMSEs) 12.1% 12.9% calibration validation datasets, indicating high accuracy early disease detection. Significant differences noted between healthy infected especially around 450 700 visible light, 1050 nm, 1425 1650 2250 near-infrared spectrum, likely due tissue damage, chlorophyll degradation water loss. Finally, Powdery Mildew Vegetation Index (PMVI) introduced, calculated as PMVI (R755 − R675)/(R755 + R675), where R755 R675 are reflectances at 755 (NIR) 675 (red), effectively estimating severity (R2 0.7). The demonstrates that spectroscopy, combined PMVI, provides reliable, non-invasive method managing promoting healthier vineyards through practices.

Язык: Английский

Процитировано

7

Speeding up UAV-based crop variability assessment through a data fusion approach using spatial interpolation for site-specific management DOI Creative Commons
Sergio Vélez, Mar Ariza-Sentís, Marko Panić

и другие.

Smart Agricultural Technology, Год журнала: 2024, Номер 8, С. 100488 - 100488

Опубликована: Июнь 15, 2024

Innovations in precision agriculture enhance complex tasks, reduce environmental impact, and increase food production cost efficiency. One of the main challenges is ensuring rapid information availability for autonomous vehicles standardizing processes across platforms to maximize interoperability. The lack drone technology standardisation, communication barriers, high costs, post-processing requirements sometimes hinder their widespread use agriculture. This research introduces a standardized data fusion framework creating real-time spatial variability maps using images from different Unmanned Aerial Vehicles (UAVs) Site-Specific Crop Management (SSM). Two interpolation methods were used (Inverse Distance Weight, IDW, Triangulated Irregular Networks, TIN), selected computational efficiency input flexibility. proposed can UAV image sources offers versatility, speed, efficiency, consuming up 98 % less time, energy, computing than standard photogrammetry techniques, providing field information, allowing edge incorporation into acquisition phase. Experiments conducted Spain, Serbia, Finland 2022 under H2020 FlexiGroBots project demonstrated strong correlation between results this method those techniques (up r = 0.93). In addition, with Sentinel 2 satellite was as that obtained photogrammetry-based orthomosaics 0.8). approach could support irrigation leak detection, soil parameter estimation, weed management, integration

Язык: Английский

Процитировано

7

Enhancing optical nondestructive methods for food quality and safety assessments with machine learning techniques: A survey DOI Creative Commons
Xinhao Wang,

Yihang Feng,

Yi Wang

и другие.

Journal of Agriculture and Food Research, Год журнала: 2025, Номер unknown, С. 101734 - 101734

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Research Progress on Autonomous Operation Technology for Agricultural Equipment in Large Fields DOI Creative Commons
Wenbo Wei, Maohua Xiao, Weiwei Duan

и другие.

Agriculture, Год журнала: 2024, Номер 14(9), С. 1473 - 1473

Опубликована: Авг. 29, 2024

Agriculture is a labor-intensive industry. However, with the demographic shift toward an aging population, agriculture increasingly confronted labor shortage. The technology for autonomous operation of agricultural equipment in large fields can improve productivity and reduce intensity, which help alleviate impact population on agriculture. Nevertheless, significant challenges persist practical application this technology, particularly concerning adaptability, operational precision, efficiency. This review seeks to systematically explore advancements unmanned operations, focus onboard environmental sensing, full-coverage path planning, control technologies. Additionally, discusses future directions key technologies fields. aspires serve as foundational reference development large-scale equipment.

Язык: Английский

Процитировано

6

Swin-Roleaf: A new method for characterizing leaf azimuth angle in large-scale maize plants DOI
Weilong He, Joseph L. Gage, Rubén Rellán‐Álvarez

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 224, С. 109120 - 109120

Опубликована: Июнь 13, 2024

Язык: Английский

Процитировано

4

MTS-YOLO: A Multi-Task Lightweight and Efficient Model for Tomato Fruit Bunch Maturity and Stem Detection DOI Creative Commons
Maonian Wu,

H.L. Lin,

Xingren Shi

и другие.

Horticulturae, Год журнала: 2024, Номер 10(9), С. 1006 - 1006

Опубликована: Сен. 22, 2024

The accurate identification of tomato maturity and picking positions is essential for efficient picking. Current deep-learning models face challenges such as large parameter sizes, single-task limitations, insufficient precision. This study proposes MTS-YOLO, a lightweight model detecting fruit bunch stem positions. We reconstruct the YOLOv8 neck network propose high- low-level interactive screening path aggregation (HLIS-PAN), which achieves excellent multi-scale feature extraction through alternating fusion information while reducing number parameters. Furthermore, utilize DySample upsampling, bypassing complex kernel computations with point sampling. Moreover, context anchor attention (CAA) introduced to enhance model’s ability recognize elongated targets bunches stems. Experimental results indicate that MTS-YOLO an F1-score 88.7% [email protected] 92.0%. Compared mainstream models, not only enhances accuracy but also optimizes size, effectively computational costs inference time. precisely identifies foreground need be harvested ignoring background objects, contributing improved efficiency. provides technical solution intelligent agricultural

Язык: Английский

Процитировано

4

Integrated Framework for Multipurpose UAV Path Planning in Hedgerow Systems Considering the Biophysical Environment DOI Creative Commons
Sergio Vélez, Gonzalo Mier, Mar Ariza-Sentís

и другие.

Crop Protection, Год журнала: 2024, Номер unknown, С. 106992 - 106992

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

3

Assessing the Impact of Overhead Agrivoltaic Systems on GNSS Signal Performance for Precision Agriculture DOI Creative Commons
Sergio Vélez, João Valente, Tamara Bretzel

и другие.

Smart Agricultural Technology, Год журнала: 2024, Номер unknown, С. 100664 - 100664

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

3

Precision Agriculture: A Bibliometric Analysis and Research Agenda DOI Creative Commons
Abderahman Rejeb, Karim Rejeb, Alireza Abdollahi

и другие.

Smart Agricultural Technology, Год журнала: 2024, Номер unknown, С. 100684 - 100684

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

3