Innovative Infrastructure Solutions, Год журнала: 2023, Номер 8(5)
Опубликована: Апрель 18, 2023
Язык: Английский
Innovative Infrastructure Solutions, Год журнала: 2023, Номер 8(5)
Опубликована: Апрель 18, 2023
Язык: Английский
IEEE Access, Год журнала: 2022, Номер 10, С. 99129 - 99149
Опубликована: Янв. 1, 2022
Ensemble learning techniques have achieved state-of-the-art performance in diverse machine applications by combining the predictions from two or more base models. This paper presents a concise overview of ensemble learning, covering three main methods: bagging, boosting, and stacking, their early development to recent algorithms. The study focuses on widely used algorithms, including random forest, adaptive boosting (AdaBoost), gradient extreme (XGBoost), light (LightGBM), categorical (CatBoost). An attempt is made concisely cover mathematical algorithmic representations, which lacking existing literature would be beneficial researchers practitioners.
Язык: Английский
Процитировано
519Journal of Cleaner Production, Год журнала: 2022, Номер 382, С. 135279 - 135279
Опубликована: Ноя. 22, 2022
Язык: Английский
Процитировано
94Journal of Building Engineering, Год журнала: 2023, Номер 75, С. 106929 - 106929
Опубликована: Май 25, 2023
Язык: Английский
Процитировано
78Journal of Building Engineering, Год журнала: 2023, Номер 72, С. 106648 - 106648
Опубликована: Апрель 25, 2023
Язык: Английский
Процитировано
50Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Июль 19, 2024
Concrete compressive strength (CS) is a crucial performance parameter in concrete structure design. Reliable prediction reduces costs and time design prevents material waste from extensive mixture trials. Machine learning techniques solve structural engineering challenges such as CS prediction. This study used Learning (ML) models to enhance the of CS, analyzing 1030 experimental data ranging 2.33 82.60 MPa previous research databases. The ML included both non-ensemble ensemble types. were regression-based, evolutionary, neural network, fuzzy-inference-system. Meanwhile, consisted adaptive boosting, random forest, gradient boosting. There eight input parameters: cement, blast-furnace-slag, aggregates (coarse fine), fly ash, water, superplasticizer, curing days, with output. Comprehensive evaluations include visual quantitative methods k-fold cross-validation assess study's reliability accuracy. A sensitivity analysis using Shapley-Additive-exPlanations (SHAP) was conducted understand better how each variable affects CS. findings showed that Categorical-Gradient-Boosting (CatBoost) model most accurate during testing stage. It had highest determination-coefficient (R
Язык: Английский
Процитировано
41Applied Soft Computing, Год журнала: 2024, Номер 159, С. 111661 - 111661
Опубликована: Апрель 23, 2024
This study addresses the enhanced prevalence of carbonation, a process accelerating steel reinforcement corrosion, in recycled aggregate concrete (RAC) compared to natural concrete. Traditional carbonation depth assessment methods RAC are noted for being labor-intensive, costly, and requiring specialized expertise. There's deficiency application machine learning techniques accurately predicting RAC, gap this aims fill. Utilizing extreme gradient boosting (XGBoost) technique, recognized its efficacy ensemble learning, innovates modeling RAC. It emphasizes criticality hyperparameter optimization XGBoost algorithm maximizing model accuracy. To achieve this, three novel metaheuristic algorithms, including reptile search (RSA), Aquila optimizer (AO), arithmetic (AOA), were introduced as global optimizers tunning hyperparameters. The was underpinned by comprehensive database compiled from extensive literature, facilitating development an accurate model. Through rigorous evaluations, sensitivity analyses, Wilcoxon signed-rank test, runtime comparisons, synthesized models demonstrated exceptional accuracy, with coefficients determination exceeding 0.95. XGBoost-AO algorithm, particular, showcased superior performance, XGBoost-RSA providing efficient predictions considering runtime. SHapley Additive exPlanations (SHAP) interpretation highlighted environmental conditions significant influencers. A user-friendly graphical user interface developed, enhancing practical utility findings progression over time. research significantly advances predictive accuracy contributing sustainable management infrastructures emphasizing integration advanced structural engineering advancements.
Язык: Английский
Процитировано
20Results in Engineering, Год журнала: 2025, Номер unknown, С. 104089 - 104089
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
15Results in Engineering, Год журнала: 2025, Номер 25, С. 104542 - 104542
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
7Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04359 - e04359
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
6Construction and Building Materials, Год журнала: 2022, Номер 360, С. 129497 - 129497
Опубликована: Ноя. 3, 2022
Язык: Английский
Процитировано
43