Materials Today Proceedings, Год журнала: 2024, Номер unknown
Опубликована: Май 1, 2024
Язык: Английский
Materials Today Proceedings, Год журнала: 2024, Номер unknown
Опубликована: Май 1, 2024
Язык: Английский
Results in Engineering, Год журнала: 2024, Номер 22, С. 102305 - 102305
Опубликована: Май 22, 2024
Air pollution in the environment is growing daily as a result of urbanization and population growth, which causes numerous health issues. Information about air quality environmental risks provided by pollutant data crucial for management. The use artificial neural network (ANN) approaches predicting pollutants reviewed this research. These methods are based on several forecast intervals, including hourly, daily, monthly ones. This study shows that ANN techniques contaminants more precisely than traditional methods. It has been discovered input parameters architecture-type algorithms used affect accuracy prediction models. therefore accurate reliable other empirical models because they can handle wide range meteorological parameters. Finally, research gap networks identified. review may inspire researchers to certain extent promote development intelligence prediction.
Язык: Английский
Процитировано
22Automation in Construction, Год журнала: 2024, Номер 162, С. 105412 - 105412
Опубликована: Апрель 3, 2024
Язык: Английский
Процитировано
20Construction and Building Materials, Год журнала: 2024, Номер 438, С. 137244 - 137244
Опубликована: Июль 2, 2024
Язык: Английский
Процитировано
14Construction and Building Materials, Год журнала: 2024, Номер 440, С. 137370 - 137370
Опубликована: Июль 16, 2024
Язык: Английский
Процитировано
12Structures, Год журнала: 2025, Номер 71, С. 108138 - 108138
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Construction and Building Materials, Год журнала: 2025, Номер 473, С. 140827 - 140827
Опубликована: Март 30, 2025
Язык: Английский
Процитировано
1Materials Today Communications, Год журнала: 2024, Номер 40, С. 110006 - 110006
Опубликована: Июль 30, 2024
Язык: Английский
Процитировано
9Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2025, Номер 8(4)
Опубликована: Фев. 26, 2025
Язык: Английский
Процитировано
1Physica Scripta, Год журнала: 2024, Номер 99(7), С. 076002 - 076002
Опубликована: Май 21, 2024
Abstract In this study, an assessment of concrete compressive strength was conducted using impulse excitation data-driven machine learning (ML) framework. The model constructed upon a deep neural network and aided by the backpropagation method, ensuring precise training process. contrast to prior research, which mainly focused on mixture components, meaningful relationship between physical parameters—resonant frequencies elastic moduli—and established our ML model. Remarkable performance demonstrated, with root mean square error value 2.8MPa determination factor 0.97. Through Pearson analysis, correlations input features output targets, ranging from −0.29 0.90, were revealed. Notably, strongest found in Young's shear moduli, derived flexural torsional frequencies, highlighting pivotal role dynamic response concrete's mechanical behavior. Furthermore, findings indicated slight prediction deviations cases involving samples high Poisson's ratio. This work illuminates potential for accurate leveraging response, particularly modes, thereby opening avenues research into without direct consideration sample ingredients.
Язык: Английский
Процитировано
6Materials Today Proceedings, Год журнала: 2024, Номер unknown
Опубликована: Апрель 1, 2024
Язык: Английский
Процитировано
4