
Fuel Processing Technology, Год журнала: 2024, Номер 267, С. 108176 - 108176
Опубликована: Дек. 24, 2024
Язык: Английский
Fuel Processing Technology, Год журнала: 2024, Номер 267, С. 108176 - 108176
Опубликована: Дек. 24, 2024
Язык: Английский
Journal of Hazardous Materials, Год журнала: 2024, Номер 474, С. 134865 - 134865
Опубликована: Июнь 12, 2024
Язык: Английский
Процитировано
18Marine Pollution Bulletin, Год журнала: 2025, Номер 212, С. 117529 - 117529
Опубликована: Янв. 4, 2025
Язык: Английский
Процитировано
1Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 144, С. 110132 - 110132
Опубликована: Янв. 31, 2025
Язык: Английский
Процитировано
1IEEE Access, Год журнала: 2024, Номер 12, С. 134852 - 134861
Опубликована: Янв. 1, 2024
Microplastics from fiber shredding are recognized by the scientific community as one of main sources microplastic water pollution. Therefore, there is a compelling need for techniques capable accurately identifying shredded microplastics in water. The recently released Holography Micro-Plastic Dataset, obtained through use digital holography microscope techniques, offers opportunity to test capability deep neural networks distinguish between and other debris on standard benchmark. promising results initial batch experiments can be further improved employing combined approach involving different image mapping leveraging recent state-of-the-art learning models. Within this framework, we analyze various fusion schemes merge paired dataset images (amplitude phase grayscale images) into single three-channel picture. We demonstrate that our proposed yields increased accuracy compared both single-image data processing techniques. Finally, performance method enhanced utilizing DenseNet model backbone learning-based classification.
Язык: Английский
Процитировано
3Emerging contaminants and associated treatment technologies, Год журнала: 2024, Номер unknown, С. 553 - 579
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
3Sensors, Год журнала: 2024, Номер 24(22), С. 7189 - 7189
Опубликована: Ноя. 9, 2024
This study focuses on the classification of six different macrofungi species using advanced deep learning techniques. Fungi species, such as Amanita pantherina, Boletus edulis, Cantharellus cibarius, Lactarius deliciosus, Pleurotus ostreatus and Tricholoma terreum were chosen based their ecological importance distinct morphological characteristics. The research employed 5 machine techniques 12 models, including DenseNet121, MobileNetV2, ConvNeXt, EfficientNet, swin transformers, to evaluate performance in identifying fungi from images. DenseNet121 model demonstrated highest accuracy (92%) AUC score (95%), making it most effective distinguishing between species. also revealed that transformer-based particularly transformer, less effective, suggesting room for improvement application this task. Further advancements could be achieved by expanding datasets, incorporating additional data types biochemical, electron microscopy, RNA/DNA sequences, ensemble methods enhance performance. findings contribute valuable insights into both use biodiversity conservation
Язык: Английский
Процитировано
3Marine Pollution Bulletin, Год журнала: 2025, Номер 213, С. 117665 - 117665
Опубликована: Фев. 17, 2025
Язык: Английский
Процитировано
0Опубликована: Фев. 21, 2025
Emerging pollutants such as pharmaceuticals, industrial chemicals, heavy metals, and microplastics are a growing ecological risk affecting water soil resources. Another challenge in current wastewater treatments includes tracking treating these pollutants, which can be costly. As concern, emerging do not have lower limit levels detrimental to aquatic resources minuscule amounts. Thus, the assessment of multiple community-based sources surface groundwater is prioritized area study for resource management. It provides basis health management arising diseases cancer dengue caused by unsafe sources. Accordingly, utilizing artificial intelligence, wide-range data-driven insights synthesized assist propose solution pathways without need exhaustive experimentation. This systematic review examines intelligence-assisted modelling notably machine learning deep models, with proximity dependence correlated synergistic effects both humans life. underscores increasing accumulation their toxicological on community how utilized addressing research gaps related treatment methods pollutants.
Язык: Английский
Процитировано
0Trends in Food Science & Technology, Год журнала: 2025, Номер unknown, С. 104964 - 104964
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Water Air & Soil Pollution, Год журнала: 2025, Номер 236(5)
Опубликована: Апрель 9, 2025
Язык: Английский
Процитировано
0