The Science of The Total Environment, Год журнала: 2023, Номер 905, С. 167172 - 167172
Опубликована: Сен. 17, 2023
Язык: Английский
The Science of The Total Environment, Год журнала: 2023, Номер 905, С. 167172 - 167172
Опубликована: Сен. 17, 2023
Язык: Английский
Sustainable Cities and Society, Год журнала: 2022, Номер 88, С. 104266 - 104266
Опубликована: Окт. 20, 2022
Язык: Английский
Процитировано
113Environmental Impact Assessment Review, Год журнала: 2022, Номер 97, С. 106887 - 106887
Опубликована: Авг. 10, 2022
Язык: Английский
Процитировано
108Technology in Society, Год журнала: 2022, Номер 70, С. 102035 - 102035
Опубликована: Июнь 16, 2022
Язык: Английский
Процитировано
103Technological Forecasting and Social Change, Год журнала: 2023, Номер 191, С. 122507 - 122507
Опубликована: Март 23, 2023
Язык: Английский
Процитировано
92Renewable Energy, Год журнала: 2023, Номер 210, С. 251 - 257
Опубликована: Апрель 17, 2023
Язык: Английский
Процитировано
88Environmental Impact Assessment Review, Год журнала: 2022, Номер 99, С. 107009 - 107009
Опубликована: Дек. 15, 2022
Язык: Английский
Процитировано
74Environmental Impact Assessment Review, Год журнала: 2023, Номер 101, С. 107128 - 107128
Опубликована: Апрель 15, 2023
Язык: Английский
Процитировано
65Environmental Impact Assessment Review, Год журнала: 2023, Номер 104, С. 107328 - 107328
Опубликована: Окт. 20, 2023
Язык: Английский
Процитировано
62Ecological Indicators, Год журнала: 2023, Номер 146, С. 109901 - 109901
Опубликована: Янв. 12, 2023
Based on employing the global super efficiency epsilon-based measure (GSE-EBM) model to evaluation green innovation (GIE) of 285 prefecture-level or above cities in China during period 2004–2018, this paper combines approaches kernel density estimation, cold hot spot analysis and standard deviation ellipse intuitively describe GIE's spatiotemporal pattern evolution features, then utilizes geographical weighted regression (GWR) explore spatial heterogeneity affecting factors. The results show that: (1) China's urban GIE displayed a fluctuating increasing trend, revealing clearly regional disparities, gradually decreased from Eastern coastal region Central, Western Northeast region. (2) difference exhibited characteristics expansion, polarization, agglomeration with center gravity shifting Southeast (3) In socio-economic factors GIE, GWR effectively identified heterogeneity, improved explanatory ability compared ordinary least squares (OLS) model. (4) indicate that population density, economic development, transportation infrastructure, openness industrial structure played significant impacts there exists impact each influencing factor. findings study can provide valuable references for transformation high-quality development China.
Язык: Английский
Процитировано
61Geoscience Frontiers, Год журнала: 2023, Номер 15(3), С. 101674 - 101674
Опубликована: Июль 17, 2023
Low carbon productivity has been identified as a key direction for China's future development. As an important driving force economic growth, the question of whether digital finance that is reliant on technology can support development low-carbon urban economy remains unresolved. Based measured by panel data from 201 cities period 2011–2020, this study applies spatial Dubin model and threshold regression to explore impact productivity, yielding following conclusions. First, distribution heterogeneity in eastern region higher than western region, both are characterized high (low)–high (low) dotted agglomeration. Second, significantly improve via two transmission channels: human capital marketization effects. At same time, exerts spillover effect rising local levels will increase neighboring areas. Heterogeneity analysis indicates agglomerations regions more significant. Third, fixed-asset investment positive nonlinear moderating finance, thus improving productivity. When per capita fixed assets does not exceed 682.73 yuan, only limit pulling productivity; when it value, intensified.
Язык: Английский
Процитировано
61