Computers and Electronics in Agriculture, Год журнала: 2023, Номер 210, С. 107892 - 107892
Опубликована: Май 5, 2023
Язык: Английский
Computers and Electronics in Agriculture, Год журнала: 2023, Номер 210, С. 107892 - 107892
Опубликована: Май 5, 2023
Язык: Английский
Archives of Computational Methods in Engineering, Год журнала: 2022, Номер 30(1), С. 427 - 455
Опубликована: Авг. 22, 2022
Язык: Английский
Процитировано
227Expert Systems with Applications, Год журнала: 2023, Номер 219, С. 119648 - 119648
Опубликована: Фев. 3, 2023
Язык: Английский
Процитировано
51Earth Science Informatics, Год журнала: 2025, Номер 18(1)
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2IEEE Access, Год журнала: 2021, Номер 9, С. 169135 - 169155
Опубликована: Янв. 1, 2021
Artificial neural networks are one of the most commonly used methods in machine learning. Performance network highly depends on learning method. Traditional algorithms prone to be trapped local optima and have slow convergence. At other hand, nature-inspired optimization proven very efficient complex problems solving due derivative-free solutions. Addressing issues traditional algorithms, this study, an enhanced version artificial bee colony metaheuristics is proposed optimize connection weights hidden units networks. Proposed improved method incorporates quasi-reflection-based guided best solution bounded mechanisms original approach manages conquer its deficiencies. First, tested a recent challenging CEC 2017 benchmark function set, then applied for training five well-known medical datasets. Further, devised algorithm compared metaheuristics-based methods. The efficiency measured by metrics - accuracy, specificity, sensitivity, geometric mean, area under curve. Simulation results prove that outperforms terms accuracy convergence speed. improvement over different datasets between 0.03% 12.94%. quasi-refection-based mechanism significantly improves speed together with bounded, exploitation capability enhanced, which better accuracy.
Язык: Английский
Процитировано
72Energy, Год журнала: 2022, Номер 265, С. 126283 - 126283
Опубликована: Дек. 3, 2022
Язык: Английский
Процитировано
69Energy Conversion and Management, Год журнала: 2022, Номер 259, С. 115590 - 115590
Опубликована: Апрель 11, 2022
Язык: Английский
Процитировано
55Engineering Applications of Artificial Intelligence, Год журнала: 2022, Номер 113, С. 104998 - 104998
Опубликована: Июнь 2, 2022
Язык: Английский
Процитировано
55Energies, Год журнала: 2022, Номер 15(6), С. 2031 - 2031
Опубликована: Март 10, 2022
High-precision forecasting of short-term wind power (WP) is integral for farms, the safe dispatch systems, and stable operation grid. Currently, data related to maintenance farms mainly comes from Supervisory Control Data Acquisition (SCADA) with certain information about operating characteristics turbines being readable in SCADA data. In WP forecasting, Long Short-Term Memory (LSTM) a commonly used in-depth learning method. present study, an optimized LSTM based on modified bald eagle search (MBES) algorithm was established construct MBES-LSTM model, model make predictions, so as address problem that selection hyperparameters may affect results. After preprocessing acquired by SCADA, forecast WP. The experimental results reveal that, compared PSO-RBF, PSO-SVM, LSTM, PSO-LSTM, BES-LSTM models, could effectively improve accuracy farms.
Язык: Английский
Процитировано
43Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 123, С. 106273 - 106273
Опубликована: Апрель 17, 2023
Язык: Английский
Процитировано
27Process Safety and Environmental Protection, Год журнала: 2024, Номер 184, С. 961 - 992
Опубликована: Фев. 10, 2024
Язык: Английский
Процитировано
15