Energy, Год журнала: 2024, Номер 292, С. 130388 - 130388
Опубликована: Янв. 23, 2024
Язык: Английский
Energy, Год журнала: 2024, Номер 292, С. 130388 - 130388
Опубликована: Янв. 23, 2024
Язык: Английский
Energy, Год журнала: 2023, Номер 283, С. 128510 - 128510
Опубликована: Июль 24, 2023
Язык: Английский
Процитировано
25Agricultural Water Management, Год журнала: 2024, Номер 292, С. 108665 - 108665
Опубликована: Янв. 9, 2024
Accurate reference crop evapotranspiration (ET0) estimation is essential for agricultural water management, productivity, and irrigation systems. As the standard ET0 method, Penman-Monteith equation has been widely recommended worldwide. However, its application still restricted to comprehensive meteorological data deficiency, making exploration of alternative simpler models acceptable highly meaningful. Concerning aforementioned requirement, this study developed novel deep learning model (MA-CNN-BiLSTM), which incorporates Multi-Head Attention mechanism (MA), Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory network (BiLSTM) as intricate relationship processor, feature extractor, regression component, estimate based on radiation-based (Rn-based), humidity-based (RH-based), temperature-based (T-based) input combinations at 600 stations during 1961–2020 throughout China under internal external cross-validation strategies. Besides, through a comparative evaluation among MA-CNN-BiLSTM, CNN-BiLSTM, BiLSTM, LSTM, Multivariate Adaptive Regression Splines (MARS), empirical models, result indicated that MA-CNN-BiLSTM achieved superior precision, with values Determination Coefficient (R2), Nash–Sutcliffe efficiency coefficient (NSE), Relative Root Mean Square Error (RRMSE), (RMSE), Absolute (MAE) ranging 0.877–0.972, 0.844–0.962, 0.129–0.292, 0.294–0.644 mm d−1, 0.244–0.566 d−1 strategy 0.797–0.927, 0.786–0.920, 0.162–0.335, 0.409–0.969 0.294–0.699 strategy. Specifically, Rn-based excelled in temperate continental zone (TCZ) mountain plateau (MPZ), while RH-based yielded best precision others. Furthermore, was by 2.74–106.04% R2, 1.11–120.49% NSE, 1.41–40.27% RRMSE, 1.68–45.53% RMSE, 1.21–38.87% MAE, respectively. In summary, main contribution present proposal LSTM-type (MA-CNN-BiLSTM) cope various data-missing scenarios China, can provide effective support decision-making regional agriculture management.
Язык: Английский
Процитировано
14Journal of Cleaner Production, Год журнала: 2024, Номер 444, С. 141228 - 141228
Опубликована: Фев. 13, 2024
Язык: Английский
Процитировано
13Computers & Electrical Engineering, Год журнала: 2024, Номер 116, С. 109182 - 109182
Опубликована: Март 16, 2024
Язык: Английский
Процитировано
12Energy, Год журнала: 2024, Номер 292, С. 130388 - 130388
Опубликована: Янв. 23, 2024
Язык: Английский
Процитировано
11