An Ensemble Model for the Energy Consumption Prediction of Residential Buildings DOI

Ritwik Mohan,

Nikhil Pachauri

Energy, Год журнала: 2024, Номер unknown, С. 134255 - 134255

Опубликована: Дек. 1, 2024

Язык: Английский

Thermophotovoltaic emitter design with a hyper-heuristic custom optimizer enabled by deep learning surrogates DOI Creative Commons

Preston Bohm,

Chiyu Yang, Akanksha K. Menon

и другие.

Energy, Год журнала: 2024, Номер 291, С. 130424 - 130424

Опубликована: Янв. 21, 2024

Язык: Английский

Процитировано

5

Estimation of concrete materials uniaxial compressive strength using soft computing techniques DOI Creative Commons

Matiur Rahman Raju,

Mahfuzur Rahman, Md Mehedi Hasan

и другие.

Heliyon, Год журнала: 2023, Номер 9(11), С. e22502 - e22502

Опубликована: Ноя. 1, 2023

This study addresses a critical gap in concrete strength prediction by conducting comparative analysis of three deep learning algorithms: convolutional neural networks (CNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) networks. Unlike previous studies that employed various machine algorithms on diverse types, our focuses mixed-design fine-tuned algorithms. The objective is to identify the optimal (DL) algorithm for predicting uniaxial compressive strength, crucial parameter construction structural engineering. dataset comprises experimental records concrete, models were developed optimized predictive accuracy. results show CNN model consistently outperformed GRU LSTM. Hyperparameter tuning regularization techniques further improved performance. research offers practical solutions material property industry, potentially reducing resource burdens enhancing efficiency quality.

Язык: Английский

Процитировано

11

Short-term forecasting of streamflow by integrating machine learning methods combined with metaheuristic algorithms DOI
Faxian Jia, Zijiang Zhu, Weihuang Dai

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 245, С. 123076 - 123076

Опубликована: Дек. 29, 2023

Язык: Английский

Процитировано

11

Solving few-shot problem in wind speed prediction: A novel transfer strategy based on decomposition and learning ensemble DOI
Yang Sun, Zhirui Tian

Applied Energy, Год журнала: 2024, Номер 377, С. 124717 - 124717

Опубликована: Окт. 24, 2024

Язык: Английский

Процитировано

4

An Ensemble Model for the Energy Consumption Prediction of Residential Buildings DOI

Ritwik Mohan,

Nikhil Pachauri

Energy, Год журнала: 2024, Номер unknown, С. 134255 - 134255

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

4