How does smart artificial intelligence influence energy system resilience? Evidence from energy vulnerability assessments in G20 countries DOI
Yingnan Zhang, Weiguo Hu, Y. B. Tao

и другие.

Energy, Год журнала: 2024, Номер unknown, С. 134290 - 134290

Опубликована: Дек. 1, 2024

Язык: Английский

Bridging the Gap or Widening Disparity? Exploring the Impact of Low-carbon Energy Technology Innovation on Carbon Inequality in Chinese cities DOI
Senmiao Yang, Xiaohui He, Jianda Wang

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106146 - 106146

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

The impact of artificial intelligence on the energy consumption of corporations: The role of human capital DOI
Chien‐Chiang Lee, Jinyang Zou, Pei‐Fen Chen

и другие.

Energy Economics, Год журнала: 2025, Номер unknown, С. 108231 - 108231

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Has the Digital Economy Improved the Urban Land Green Use Efficiency? Evidence from the National Big Data Comprehensive Pilot Zone Policy DOI Creative Commons

Guangya Zhou,

Helian Xu,

Chuanzeng Jiang

и другие.

Land, Год журнала: 2024, Номер 13(7), С. 960 - 960

Опубликована: Июнь 30, 2024

The advancement of the big data industry is playing a pivotal role in urban land management refinement. Recently, China initiated strategy, establishing national comprehensive pilot zones (NBDCPZs) across diverse regions. These initiatives present substantial opportunities for enhancing green use efficiency (ULGUE). Consequently, this study, we utilized super-efficiency slack-based measure (SBM) model with undesirable outputs to assess ULGUEs 281 prefecture-level cities from 2006 2021. Subsequently, leveraging NBDCPZ establishment as quasi-natural experiment, employed difference-in-differences (DID) method empirically explore impact policy on ULGUE first time. findings revealed following: (1) implementation significantly enhances ULGUE; (2) effects are mediated through mechanisms such fostering technological innovation, mitigating resource misallocation, and promoting industrial agglomeration; (3) heterogeneity analysis emphasizes increased effectiveness characterized by fewer natural resources, lower economic growth pressures, stable development stages, moderate digital infrastructure human capital levels; (4) further demonstrates significant positive spillover neighboring non-pilot cities, diminishing proximity between decreases. Overall, study contributes literature relationship economy utilization, offering valuable insights achieving sustainable development.

Язык: Английский

Процитировано

7

Optimal strategy of artificial intelligence on low-carbon energy transformation: Perspective from enterprise green technology innovation efficiency DOI
Mingtao Zhao, Xuebao Fu,

Jun Sun

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 135035 - 135035

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Multi-renewable energy resources parameters prediction through meta-learning models selectivity analysis and parallel fusion approaches DOI
Muhammad Abubakar, Yanbo Che, Muhammad Shoaib Bhutta

и другие.

Electrical Engineering, Год журнала: 2025, Номер unknown

Опубликована: Фев. 27, 2025

Язык: Английский

Процитировано

0

Artificial intelligence and enterprise pollution emissions: From the perspective of energy transition DOI

Youcai Yang,

Xiaotong Niu,

Changgui Lin

и другие.

Energy Economics, Год журнала: 2025, Номер unknown, С. 108349 - 108349

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

How does the construction of new generation of national AI innovative development pilot zones drive enterprise ESG development? Empirical evidence from China DOI
Yujie Huang, Shucheng Liu,

Jiawu Gan

и другие.

Energy Economics, Год журнала: 2024, Номер unknown, С. 108011 - 108011

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

3

Blessings or curses? Exploring the impact of digital technology innovation on natural resource utilization efficiency in China DOI
Senmiao Yang, Kangyin Dong, Jianda Wang

и другие.

Resources Policy, Год журнала: 2024, Номер 98, С. 105319 - 105319

Опубликована: Сен. 19, 2024

Язык: Английский

Процитировано

2

Does the Innovative City Pilot Policy Promote Urban Energy Use Efficiency? Evidence from China DOI Open Access
Deheng Xiao, Tengfei Sun, Kaixiang Huang

и другие.

Sustainability, Год журнала: 2024, Номер 16(17), С. 7552 - 7552

Опубликована: Авг. 31, 2024

The innovative city pilot policy (ICPP) is a key practice in China’s innovation-driven economic strategy, yet its influence on urban energy use efficiency (UEUE) has to be assessed. This study used balanced panel data from Chinese cities the period of 2006 2022 investigate impact consumption efficiency. double-difference method, which treats creative as quasi-natural experiments, was applied identify mechanism these cities. Additionally, this looked at heterogeneity several angles and assessed effects environment. Following thorough testing guarantee reliability findings study—such changing variables, ruling out further interferences, running placebo tests—it can concluded that program significantly improves consumption. analysis performed shows that, via talent concentration, utilizing technology, optimizing industrial structure, policies increase eastern with high degree digital finance benefit most legislation terms application programs more noticeable effect increasing cities, well infrastructure finance, according analysis. Furthermore, an environmental consequence test by encouraging growth UEUE, development successfully help reduce carbon emissions.

Язык: Английский

Процитировано

1

AI meets physics: a comprehensive survey DOI Creative Commons
Licheng Jiao, Song Xue, Chao You

и другие.

Artificial Intelligence Review, Год журнала: 2024, Номер 57(9)

Опубликована: Авг. 16, 2024

Uncovering the mechanisms of physics is driving a new paradigm in artificial intelligence (AI) discovery. Today, has enabled us to understand AI wide range matter, energy, and space-time scales through data, knowledge, priors, laws. At same time, also draws on introduces knowledge laws promote its own development. Then this using physical science inspire (PhysicsScience4AI, PS4AI). Although become force for development various fields, there still "black box" phenomenon that difficult explain field deep learning. This article will briefly review connection between relevant disciplines (classical mechanics, electromagnetism, statistical physics, quantum mechanics) AI. It focus discussing how they learning paradigm, introduce some related work solves problems. PS4AI research field. end article, we summarize challenges facing physics-inspired look forward next generation technology. aims provide brief algorithms stimulate future exploration by elucidating recent advances physics.

Язык: Английский

Процитировано

1