Xu Weight is All that Models Need! A Short-Term Power Load Forecasting Method Based on a Novel Adaptive Feature Selection Method and Xu Weight DOI

Jingqi Xu,

Xueman Wang,

Hui Hou

и другие.

Опубликована: Янв. 1, 2024

Язык: Английский

A Novel Approach for State of Health Estimation and Remaining Useful Life Prediction of Supercapacitors Using an Improved Honey Badger Algorithm Assisted Hybrid Neural Network DOI Creative Commons
Zhenxiao Yi, Shi Wang, Zhaoting Li

и другие.

Protection and Control of Modern Power Systems, Год журнала: 2024, Номер 9(6), С. 1 - 18

Опубликована: Ноя. 1, 2024

Supercapacitors (SCs) are widely recognized as excellent clean energy storage devices. Accurate state of health (SOH) estimation and remaining useful life (RUL) prediction essential for ensuring their safe reliable operation. This paper introduces a novel method SOH RUL prediction, based on hybrid neural network optimized by an improved honey badger algorithm (HBA). The combines the advantages convolutional (CNN) bidirectional long-short-term memory (BiLSTM) network. HBA optimizes hyperparameters CNN automatically extracts deep features from time series data reduces dimensionality, which then used input BiLSTM. Additionally, recurrent dropout is introduced in layer to reduce overfitting facilitate learning process. approach not only improves accuracy estimates forecasts but also significantly processing time. SCs under different working conditions validate proposed method. results show that model effectively features, enriches local details, enhances global perception capabilities. outperforms single models, reducing root mean square error below 1%, offers higher robustness compared other methods.

Язык: Английский

Процитировано

18

A multi-energy loads forecasting model based on dual attention mechanism and multi-scale hierarchical residual network with gated recurrent unit DOI
Wenhao Chen, Rong Fei, Chuan Lin

и другие.

Energy, Год журнала: 2025, Номер 320, С. 134975 - 134975

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

2

Flexible energy storage estimation for electric buses: A hybrid data-driven and physical model-driven approach DOI
Jinkai Shi, Weige Zhang, Yan Bao

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 119, С. 116230 - 116230

Опубликована: Март 25, 2025

Язык: Английский

Процитировано

0

Advancing Short-Term Load Forecasting with decomposed Fourier ARIMA: A Case Study on the Greek Energy Market DOI Creative Commons

Spyridon Karamolegkos,

Dimitrios E. Koulouriotis

Energy, Год журнала: 2025, Номер unknown, С. 135854 - 135854

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Online decoupling feature framework for optimal probabilistic load forecasting in concept drift environments DOI
Chaojin Cao, Yaoyao He, Xiaodong Yang

и другие.

Applied Energy, Год журнала: 2025, Номер 392, С. 125952 - 125952

Опубликована: Апрель 25, 2025

Язык: Английский

Процитировано

0

A probabilistic load forecasting method for multi-energy loads based on inflection point optimization and integrated feature screening DOI
Xiaoyu Zhao, Pengfei Duan, Xiaodong Cao

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 136391 - 136391

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

A systematic review of modeling method of multi-energy coupling and conversion for urban buildings DOI
Shuo Liu,

Yi Dai,

Xiaohua Liu

и другие.

Energy and Buildings, Год журнала: 2025, Номер unknown, С. 115886 - 115886

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

A double deep reinforcement learning-based adaptive framework for decision-optimal wind power interval prediction DOI
Chenghan Li, Ye Guo, Yinliang Xu

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 136661 - 136661

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

CEEMDAN-SE-HDBSCAN-VMD-TCN-BiGRU: A two-stage decomposition-based parallel model for multi-altitude ultra-short-term wind speed forecasting DOI

Xiaobang Wu,

Deguang Wang, Ming Yang

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 136660 - 136660

Опубликована: Июнь 1, 2025

Язык: Английский

Процитировано

0

Sequence signal prediction and reconstruction for multi-energy load forecasting in integrated energy systems: A bi-level multi-task learning method DOI

Chengchen Liao,

Mao Tan, Kang Li

и другие.

Energy, Год журнала: 2024, Номер unknown, С. 133960 - 133960

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

3