Heat transfer comparison investigation of the permanent magnet synchronous motor for electric vehicles based on the boundary element method and the finite element method DOI Open Access
Jiacheng Zhang, Haixu Zhang, Zining Liu

и другие.

Thermal Science, Год журнала: 2023, Номер 28(2 Part A), С. 863 - 875

Опубликована: Авг. 2, 2023

In the field of heat transfer in permanent magnet synchronous motors (PMSM) for electric vehicles, boundary element method (BEM) has been applied first time to calculate steady-state temperature PMSM with a spiral water-cooled system. this investigation, boundary-integration equation problem is derived on basis thermodynamic theory, and system constant coefficient differential equations obtained by discretizing its boundaries, while results from BEM are compared finite (FEM) results. Furthermore, distribution characteristics FEM were verified twice using prototype test platform. The show that maximum relative error between calculation 1.97%, does not exceed 3%, which finally verifies validity accuracy solving problems PMSM.

Язык: Английский

Maturity Classification of Rapeseed Using Hyperspectral Image Combined with Machine Learning DOI Creative Commons
Hui Feng, Yongqi Chen, Jingyan Song

и другие.

Plant Phenomics, Год журнала: 2024, Номер 6

Опубликована: Янв. 1, 2024

Oilseed rape is an important oilseed crop planted worldwide. Maturity classification plays a crucial role in enhancing yield and expediting breeding research. Conventional methods of maturity are laborious destructive nature. In this study, nondestructive model was established on the basis hyperspectral imaging combined with machine learning algorithms. Initially, images were captured for 3 distinct ripeness stages rapeseed, raw spectral data extracted from images. The underwent preprocessing using 5 pretreatment methods, namely, Savitzky–Golay, first derivative, second derivative (D2nd), standard normal variate, detrend, as well various combinations these methods. Subsequently, feature wavelengths processed spectra competitive adaptive reweighted sampling, successive projection algorithm (SPA), iterative spatial shrinkage interval variables (IVISSA), their combination algorithms, respectively. models constructed following algorithms: extreme machine, k -nearest neighbor, random forest, partial least-squares discriminant analysis, support vector (SVM) applied separately to full wavelength wavelengths. A comparative analysis conducted evaluate performance diverse selection models, results showed that based preprocessing-feature selection-machine could effectively predict rapeseed. D2nd-IVISSA-SPA-SVM exhibited highest modeling performance, attaining accuracy rate 97.86%. findings suggest rapeseed can be rapidly nondestructively ascertained through imaging.

Язык: Английский

Процитировано

20

Energy and Exergy Analysis of a Newly Designed Photovoltaic Thermal System Featuring Ribs, Petal array, and coiled twisted tapes: Experimental Analysis DOI Creative Commons
Banw Omer Ahmed, Adnan Ibrahim, Hariam Luqman Azeez

и другие.

Case Studies in Thermal Engineering, Год журнала: 2024, Номер 63, С. 105388 - 105388

Опубликована: Окт. 31, 2024

Язык: Английский

Процитировано

16

Design and optimization of a household photovoltaic/thermal collector with serpentine tube: Energy and exergy analysis DOI
Thamir Alsharifi, Jasim M. Mahdi, Hussein Togun

и другие.

Applied Thermal Engineering, Год журнала: 2024, Номер 246, С. 122983 - 122983

Опубликована: Март 18, 2024

Язык: Английский

Процитировано

15

Optimizing Nanofluid Hybrid Solar Collectors through Artificial Intelligence Models DOI Creative Commons

Safae Margoum,

Bekkay Hajji, Stefano Aneli

и другие.

Energies, Год журнала: 2024, Номер 17(10), С. 2307 - 2307

Опубликована: Май 10, 2024

This study systematically explores and compares the performance of various artificial-intelligence (AI)-based models to predict electrical thermal efficiency photovoltaic–thermal systems (PVTs) cooled by nanofluids. Employing extreme gradient boosting (XGB), extra tree regression (ETR), k-nearest-neighbor (KNN) models, their accuracy is quantitatively evaluated, effectiveness measured. The results demonstrate that both XGB ETR consistently outperform KNN in accurately predicting efficiency. Specifically, model achieves remarkable correlation coefficient (R2) values approximately 0.99999, signifying its superior predictive capabilities. Notably, exhibits a slightly compared estimating Furthermore, when efficiency, excellence, with showing slight edge based on R2 values. Validation against new data points reveals outstanding performance, attaining 0.99997 for 0.99995 These quantitative findings underscore reliability PVT study’s implications are significant system designers industry professionals, as incorporation AI-based offers improved accuracy, faster prediction times, ability handle large datasets. presented this contribute optimization, evaluation, decision-making field. Additionally, robust validation enhances credibility these advancing overall understanding applicability AI systems.

Язык: Английский

Процитировано

7

The entropy generation analysis of a PVT solar collector with internally needle finned serpentine absorber tube DOI
Lei Liu, A. Shalwan,

Junzhou Teng

и другие.

Engineering Analysis with Boundary Elements, Год журнала: 2023, Номер 155, С. 1123 - 1130

Опубликована: Авг. 2, 2023

Язык: Английский

Процитировано

15

Data-driven prediction of aerodynamic noise of transonic buffeting over an airfoil DOI
Qiao Zhang, Xu Wang,

Dangguo Yang

и другие.

Engineering Analysis with Boundary Elements, Год журнала: 2024, Номер 163, С. 549 - 561

Опубликована: Апрель 9, 2024

Язык: Английский

Процитировано

5

Performance investigation of a hybrid PV/T collector with a novel trapezoidal fluid channel DOI

Shiqian Dong,

Long He,

Jingxuan Guan

и другие.

Energy, Год журнала: 2023, Номер 288, С. 129594 - 129594

Опубликована: Ноя. 9, 2023

Язык: Английский

Процитировано

10

Improving the photovoltaic thermal system efficiency with nature-inspired dolphin turbulators from energy and exergy viewpoints DOI
Iman Bashtani, Javad Abolfazli Esfahani

Renewable Energy, Год журнала: 2024, Номер 231, С. 120931 - 120931

Опубликована: Июль 6, 2024

Язык: Английский

Процитировано

4

Advances in nanofluids for tubular heat exchangers: Thermal performance, environmental effects, economics and outlook DOI
Tauseef‐ur Rehman, Cheol Woo Park

Energy, Год журнала: 2024, Номер 308, С. 132732 - 132732

Опубликована: Авг. 3, 2024

Язык: Английский

Процитировано

4

Prediction of heat transfer characteristics and energy efficiency of a PVT solar collector with corrugated-tube absorber using artificial neural network and group method data handling models DOI
Lei Li,

Waqed H. Hassan,

Abrar A. Mohammed

и другие.

International Communications in Heat and Mass Transfer, Год журнала: 2024, Номер 157, С. 107829 - 107829

Опубликована: Июль 22, 2024

Язык: Английский

Процитировано

3