An effective multi-stage evolutionary algorithm for distributed scheduling with splitting jobs in heterogeneous factories DOI
Xin Guo, Qianwang Deng, Qiang Luo

и другие.

Engineering Optimization, Год журнала: 2024, Номер unknown, С. 1 - 29

Опубликована: Авг. 7, 2024

This article examines an alliance of heterogeneous factories operating as a production network, in which jobs can be divided into several sub-jobs and independently processed distributed factories. problem is considered unrelated parallel machine scheduling with splitting (DUPMSP/S). A mathematical model effective multi-stage evolutionary algorithm (EMSEA) are proposed, aiming to minimize the total tardiness cost transportation. In EMSEA, optimization process three stages according population each generation, four problem-based initial methods knowledge-based local exploitation strategies embedded improve its performance. Extensive experiments conducted compare EMSEA other algorithms no jobs. The results demonstrate that most promising method solving DUPMSP/S, job mode effective.

Язык: Английский

Mathematical model and knowledge-based iterated greedy algorithm for distributed assembly hybrid flow shop scheduling problem with dual-resource constraints DOI
Fei Yu, Chao Lu, Jiajun Zhou

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 239, С. 122434 - 122434

Опубликована: Ноя. 4, 2023

Язык: Английский

Процитировано

44

A distributed permutation flow-shop considering sustainability criteria and real-time scheduling DOI Creative Commons
Amir M. Fathollahi‐Fard, L. A. Woodward,

Ouassima Akhrif

и другие.

Journal of Industrial Information Integration, Год журнала: 2024, Номер 39, С. 100598 - 100598

Опубликована: Март 12, 2024

Recent advancements in production scheduling have arisen response to the need for adaptation dynamic environments. This paper addresses challenge of real-time within context sustainable production. We redefine distributed permutation flow-shop problem using an online mixed-integer programming model. The proposed model prioritizes minimizing makespan while simultaneously constraining energy consumption, reducing number lost working days and increasing job opportunities permissible limits. Our approach considers machines operating different modes, ranging from manual automatic, employs two strategies: predictive-reactive proactive-reactive scheduling. evaluate rescheduling policies: continuous event-driven. To demonstrate model's applicability, we present a case study auto workpiece manage complexity through various reformulations heuristics, such as Lagrangian relaxation Benders decomposition initial optimization well four problem-specific heuristics considerations. For solving large-scale instances, employ simulated annealing tabu search metaheuristic algorithms. findings underscore benefits strategy efficiency event-driven policy. By addressing challenges integrating sustainability criteria, this contributes valuable insights into

Язык: Английский

Процитировано

26

Modeling and optimization algorithm for energy-efficient distributed assembly hybrid flowshop scheduling problem considering worker resources DOI
Fei Yu, Chao Lu, Lvjiang Yin

и другие.

Journal of Industrial Information Integration, Год журнала: 2024, Номер 40, С. 100620 - 100620

Опубликована: Май 3, 2024

Язык: Английский

Процитировано

22

Multi-objective fitness landscape-based estimation of distribution algorithm for distributed heterogeneous flexible job shop scheduling problem DOI
Fuqing Zhao, Mengjie Li, Ningning Zhu

и другие.

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112780 - 112780

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

A knowledge-guided bi-population evolutionary algorithm for energy-efficient scheduling of distributed flexible job shop problem DOI
Fei Yu, Chao Lu, Jiajun Zhou

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 128, С. 107458 - 107458

Опубликована: Ноя. 15, 2023

Язык: Английский

Процитировано

39

A reinforcement learning enhanced memetic algorithm for multi-objective flexible job shop scheduling toward Industry 5.0 DOI
Xiao Chang, Xiaoliang Jia, Jiahao Ren

и другие.

International Journal of Production Research, Год журнала: 2024, Номер unknown, С. 1 - 29

Опубликована: Май 30, 2024

Flexible job shop scheduling problem (FJSP) with worker flexibility has gained significant attention in the upcoming Industry 5.0 era because of its computational complexity and importance production processes. It is normally assumed that each machine typically operated by one at any time; therefore, shop-floor managers need to decide on most efficient assignments for machines workers. However, processing time variable uncertain due fluctuating environment caused unsteady operating conditions learning effect Meanwhile, they also balance workload while meeting efficiency. Thus a dual resource-constrained FJSP worker's fuzzy (F-DRCFJSP-WL) investigated simultaneously minimise makespan, total workloads maximum workload. Subsequently, reinforcement enhanced multi-objective memetic algorithm based decomposition (RL-MOMA/D) proposed solving F-DRCFJSP-WL. For RL-MOMA/D, Q-learning incorporated into perform neighbourhood search further strengthen exploitation capability algorithm. Finally, comprehensive experiments extensive test instances case study aircraft overhaul are conducted demonstrate effectiveness superiority method.

Язык: Английский

Процитировано

12

A feedback learning-based selection hyper-heuristic for distributed heterogeneous hybrid blocking flow-shop scheduling problem with flexible assembly and setup time DOI
Zhongshi Shao, Weishi Shao,

Jianrui Chen

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 131, С. 107818 - 107818

Опубликована: Янв. 9, 2024

Язык: Английский

Процитировано

11

Evolutionary computation and reinforcement learning integrated algorithm for distributed heterogeneous flowshop scheduling DOI
Rui Li, Ling Wang, Wenyin Gong

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 135, С. 108775 - 108775

Опубликована: Июнь 12, 2024

Язык: Английский

Процитировано

9

Ship pipe production optimization method for solving distributed heterogeneous energy-efficient flexible flowshop scheduling with mobile resource limitation DOI
Hua Xuan, Xiaofan Zhang, Yixuan Wu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126603 - 126603

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Improved Jaya algorithm for energy-efficient distributed heterogeneous permutation flow shop scheduling DOI
Qiwen Zhang, Zhen Tian

The Journal of Supercomputing, Год журнала: 2025, Номер 81(2)

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

1