Cold Regions Science and Technology, Год журнала: 2023, Номер 218, С. 104077 - 104077
Опубликована: Ноя. 27, 2023
Язык: Английский
Cold Regions Science and Technology, Год журнала: 2023, Номер 218, С. 104077 - 104077
Опубликована: Ноя. 27, 2023
Язык: Английский
Construction and Building Materials, Год журнала: 2024, Номер 414, С. 134950 - 134950
Опубликована: Янв. 21, 2024
Язык: Английский
Процитировано
13Automation in Construction, Год журнала: 2024, Номер 168, С. 105772 - 105772
Опубликована: Сен. 17, 2024
Язык: Английский
Процитировано
13Automation in Construction, Год журнала: 2024, Номер 164, С. 105482 - 105482
Опубликована: Май 24, 2024
Язык: Английский
Процитировано
10Signal Image and Video Processing, Год журнала: 2025, Номер 19(4)
Опубликована: Фев. 24, 2025
Язык: Английский
Процитировано
1Buildings, Год журнала: 2024, Номер 14(5), С. 1442 - 1442
Опубликована: Май 16, 2024
Accurate pavement surface crack detection is crucial for analyzing survey data and the development of maintenance strategies. On basis Swin-Unet, this study develops improved Swin-Unet (iSwin-Unet) model with developed skip attention module residual Swin Transformer block. Based on channel mechanism, region can be better captured while feature channels assigned more weights. Taking advantage block, encoder architecture globally feature. Meanwhile, information efficiently exchanged. To verify performance proposed model, we compare training visualization results other three models, which are Transformer, Unet, respectively. Three public benchmarks (CFD, Crack500, CrackSC) have been adopted purpose training, validation, testing. test results, it found that iSwin-Unet achieves a significant increase in mF1 score, mPrecision, mRecall compared to existing thereby establishing its efficacy underlining advancements over current methodologies.
Язык: Английский
Процитировано
8Computer-Aided Civil and Infrastructure Engineering, Год журнала: 2025, Номер unknown
Опубликована: Март 3, 2025
Abstract Pavement crack measurement (PCM) is essential for automated, precise road condition assessment. However, balancing speed and accuracy on edge artificial intelligence (AI) mobile devices remains challenging. This paper proposes a real‐time PCM framework deployment, incorporating lightweight distillation network surface feature algorithm. Specifically, the proposed instance‐aware hybrid module combines feature‐based relation‐based knowledge distillation, leveraging instance‐related information efficient transfer from teacher to student networks, which results in more accurate segmentation model. Additionally, algorithm, based distance mapping relationships coordinate extraction, addresses issues with branching loss, enhancing efficiency. Real‐time was performed actual roads utilizing robot equipped an computing unit. The precision reached 84.37%, frame per second of 77.72. Compared ground truth, relative error average width ranged 6.42% 40.65%, while length varied between 1.48% 3.76%. These findings highlight feasibility assessment save maintenance costs.
Язык: Английский
Процитировано
1Automation in Construction, Год журнала: 2024, Номер 168, С. 105770 - 105770
Опубликована: Сен. 11, 2024
Язык: Английский
Процитировано
6Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 129, С. 107624 - 107624
Опубликована: Дек. 4, 2023
Язык: Английский
Процитировано
12Results in Engineering, Год журнала: 2024, Номер 23, С. 102745 - 102745
Опубликована: Авг. 18, 2024
Язык: Английский
Процитировано
4Results in Engineering, Год журнала: 2024, Номер 25, С. 103726 - 103726
Опубликована: Дек. 11, 2024
Язык: Английский
Процитировано
4