Nonlinear Intelligent Inversion Method and Practice for In-situ Stress in Stratified Rock Masses with Deep Valley DOI

Zebin Song,

Quan Jiang, Pengfei Chen

и другие.

Rock Mechanics and Rock Engineering, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 19, 2024

Язык: Английский

Flat broadband frequency upconversion within thin-film lithium niobate waveguide achieved by multi-objective genetic algorithm particle swarm optimization DOI Creative Commons
Yiheng Wu, Haitao Chen,

He Fu

и другие.

Optics Express, Год журнала: 2025, Номер 33(4), С. 7126 - 7126

Опубликована: Янв. 31, 2025

In the field of nonlinear infrared frequency upconversion within a poled thin film lithium niobate (TFLN) waveguide for spectroscopy, there is persistent demand achieving flat broadband response, characterized by minimal variation in output intensity across desired wavelength range. We propose design method that significantly broadens spectral bandwidth and enhances response flatness through multi-objective genetic algorithm particle swarm optimization (GAPSO). This approach minimizes human intervention process, thereby enhancing efficiency accuracy compared to traditional methods depend on preset parameters. Compared chirped periodically TFLN waveguide-based scheme, remarkable expansion from 180 nm 312 (a 73% increase) an improved 1.71 dB 0.56 reduction over 67%) achieved. work not only paves way more efficient scheme but also opens new avenues advancements optical applications, such as telecommunications sensing technologies.

Язык: Английский

Процитировано

1

Prediction and strategies of buildings’ energy consumption: A review of modeling approaches and energy-saving technologies DOI

Fangzheng Li,

Tengfei Peng,

Jing Chen

и другие.

International Journal of Green Energy, Год журнала: 2025, Номер unknown, С. 1 - 36

Опубликована: Март 6, 2025

Язык: Английский

Процитировано

1

Adsorbent shaping as enabler for intensified pressure swing adsorption (PSA): A critical review DOI Creative Commons

Dora-Andreea Chisăliță,

Jurriaan Boon, Leonie Lücking

и другие.

Separation and Purification Technology, Год журнала: 2024, Номер 353, С. 128466 - 128466

Опубликована: Июнь 16, 2024

Pressure swing adsorption is widely applied in industry for hydrogen purification, methane recovery, air separation, biomass upgrading, CO2 to name a few. To further improve the attractiveness of pressure systems, ongoing research focusses on ways intensify process. In particular, productivity and reduce footprint system consequently leading reduced capital operating costs. The proposed solution known as fast or rapid cycling which, implies, means cycle time. However, there are some challenges overcome such mass transfer limitations separation efficiency, well increased drop due high superficial velocities typical cycling. Adsorbent shaping has potential these it being regarded promising process intensification processes offering great flexibility designing optimized cycles with improved performance. Various adsorbent shapes monoliths, laminates, foams fibers have been studied literature monolith structures most popular. Most published topic concentrated material development lab-scale testing, modeling, manufacturing through 3D printing techniques. Performance evaluations generally target enhanced kinetics only few papers addressing broader context economic assessments gained benefits using structured adsorbents place beads pellets. Although, sorbent very developing field, still significant work be done reach its full potential. Further should go beyond shape optimization testing pilot/large-scale under cyclic conditions. this context, newly developed artificial intelligence tools show promise intensified based by speeding up computation time complex routines. date, limited industrial applications sorbents. One main hurdles large scale deployments labor intensive preparation methods currently available, Thus, easy, cost-effective options automatization, will expedite large-scale implementation processes.

Язык: Английский

Процитировано

7

A two-stage network framework for topology optimization incorporating deep learning and physical information DOI
Dalei Wang, Yun Ning, Xiang Cheng

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108185 - 108185

Опубликована: Март 2, 2024

Язык: Английский

Процитировано

6

Multi-agent deep reinforcement learning with enhanced collaboration for distribution network voltage control DOI

Jiapeng Huang,

Huifeng Zhang, Tian Ding

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 134, С. 108677 - 108677

Опубликована: Июнь 3, 2024

Язык: Английский

Процитировано

5

Success History Adaptive Competitive Swarm Optimizer with Linear Population Reduction: Performance benchmarking and application in eye disease detection DOI
Rui Zhong, Zhongmin Wang, Abdelazim G. Hussien

и другие.

Computers in Biology and Medicine, Год журнала: 2025, Номер 186, С. 109587 - 109587

Опубликована: Янв. 2, 2025

Язык: Английский

Процитировано

0

Adulteration Detection of Cow Milk in Buffalo Milk Using Fourier-Transform Infrared Spectroscopy and Artificial Intelligence-Based Techniques DOI
Sinem Çolak, İrem Uzunsoy, Ali Narin

и другие.

Journal of Food Composition and Analysis, Год журнала: 2025, Номер unknown, С. 107203 - 107203

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Assembly sequence planning based on hybrid SOS-PSO algorithm DOI
Jian Zhang,

Chang Chen,

Shaohui Su

и другие.

The International Journal of Advanced Manufacturing Technology, Год журнала: 2025, Номер unknown

Опубликована: Фев. 12, 2025

Язык: Английский

Процитировано

0

Time-varying elite sand cat optimisation algorithms for engineering design and feature selection DOI
Li Zhang

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127026 - 127026

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Electrical Storm Optimization (ESO) Algorithm: Theoretical Foundations, Analysis, and Application to Engineering Problems DOI Creative Commons
Manuel Soto Calvo, Han Soo Lee

Machine Learning and Knowledge Extraction, Год журнала: 2025, Номер 7(1), С. 24 - 24

Опубликована: Март 6, 2025

The electrical storm optimization (ESO) algorithm, inspired by the dynamic nature of storms, is a novel population-based metaheuristic that employs three dynamically adjusted parameters: field resistance, intensity, and conductivity. Field resistance assesses spread solutions within search space, reflecting strategy diversity. intensity balances exploration new territories exploitation promising areas. conductivity adjusts adaptability process, enhancing algorithm’s ability to escape local optima converge on global solutions. These adjustments enable ESO adapt in real-time various scenarios, steering toward potential optima. ESO’s performance was rigorously tested against 60 benchmark problems from IEEE CEC SOBC 2022 suite 20 well-known metaheuristics. results demonstrate superior ESOs, particularly tasks requiring nuanced balance between exploitation. Its efficacy further validated through successful applications four engineering domains, highlighting its precision, stability, flexibility, efficiency. Additionally, computational costs were evaluated terms number function evaluations overhead, reinforcing status as standout choice field.

Язык: Английский

Процитировано

0