<strong>Recent Optimization Methods and Techniques for Medical Image Analysis</strong> DOI Open Access
Jing Wang

Опубликована: Сен. 30, 2023

Medical image analysis is an important branch in the field of medicine, which mainly uses processing and techniques to interpret diagnose medical data. data helps doctors effectively observe patients' body structures, tissues lesions. has been research area field, it for disease diagnosis, treatment planning, condition monitoring. In recent years, rapid development deep learning computer vision technologies contributed greatly automation, multimodal fusion, real-time application, accuracy improvement analysis. addition, given rise some new areas analysis, such as Generative Adversarial Networks (GANs) synthetic images, self-supervised unsupervised feature learning, neural network interpretability. this paper, we will introduce optimisation methods images are effective improving accuracy, efficiency reliability

Язык: Английский

Deep Nonnegative Matrix Factorization with Joint Global and Local Structure Preservation DOI
Farid Saberi-Movahed, B. Biswas, Prayag Tiwari

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 249, С. 123645 - 123645

Опубликована: Март 11, 2024

Язык: Английский

Процитировано

14

Explaining deep learning models for ozone pollution prediction via embedded feature selection DOI Creative Commons
M. J. Jiménez-Navarro, M. Martínez-Ballesteros, Francisco Martínez‐Álvarez

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 157, С. 111504 - 111504

Опубликована: Март 22, 2024

Ambient air pollution is a pervasive global issue that poses significant health risks. Among pollutants, ozone (O3) responsible for an estimated 1 to 1.2 million premature deaths yearly. Furthermore, O3 adversely affects climate warming, crop productivity, and more. Its formation occurs when nitrogen oxides volatile organic compounds react with short-wavelength solar radiation. Consequently, urban areas high traffic volume elevated temperatures are particularly prone levels, which pose risk their inhabitants. In response this problem, many countries have developed web mobile applications provide real-time information using sensor data. However, while these offer valuable insight into current predicting future pollutant behavior crucial effective planning mitigation strategies. Therefore, our main objectives develop accurate efficient prediction models identify the key factors influence levels. We adopt time series forecasting approach address objectives, allows us analyze predict behavior. Additionally, we tackle feature selection problem most relevant features periods contribute accuracy by introducing novel method called Time Selection Layer in Deep Learning models, significantly improves model performance, reduces complexity, enhances interpretability. Our study focuses on data collected from five representative Seville, Cordova, Jaen provinces Spain, multiple sensors capture comprehensive compare performance of three models: Lasso, Decision Tree, without incorporating Layer. results demonstrate including effectiveness interpretability achieving average improvement 9% across all monitored areas.

Язык: Английский

Процитировано

14

Adaptive patch selection to improve Vision Transformers through Reinforcement Learning DOI Creative Commons
Francesco Cauteruccio, Michele Marchetti,

Davide Traini

и другие.

Applied Intelligence, Год журнала: 2025, Номер 55(7)

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

1

Low-Redundant Unsupervised Feature Selection based on Data Structure Learning and Feature Orthogonalization DOI
Mahsa Samareh-Jahani, Farid Saberi-Movahed, Mahdi Eftekhari

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 240, С. 122556 - 122556

Опубликована: Ноя. 12, 2023

Язык: Английский

Процитировано

18

Unsupervised feature selection using sparse manifold learning: Auto-encoder approach DOI
Amir Moslemi, Mina Jamshidi

Information Processing & Management, Год журнала: 2024, Номер 62(1), С. 103923 - 103923

Опубликована: Окт. 18, 2024

Язык: Английский

Процитировано

7

Enhancing thyroid nodule classification: A comprehensive analysis of feature selection in thermography DOI
Mahnaz Etehadtavakol, Mojtaba Sirati-Amsheh, Golnaz Moallem

и другие.

Infrared Physics & Technology, Год журнала: 2025, Номер unknown, С. 105730 - 105730

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Class-specific feature selection using fuzzy information-theoretic metrics DOI
Ma Xiao, Hao Xu, Yi Liu

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 136, С. 109035 - 109035

Опубликована: Июль 29, 2024

Язык: Английский

Процитировано

6

Subspace learning via Hessian regularized latent representation learning with $${l}_{2,0}$$-norm constraint: unsupervised feature selection DOI
Amir Moslemi,

Afshin Shaygani

International Journal of Machine Learning and Cybernetics, Год журнала: 2024, Номер 15(11), С. 5361 - 5380

Опубликована: Июнь 21, 2024

Язык: Английский

Процитировано

5

Subspace learning for feature selection via rank revealing QR factorization: Fast feature selection DOI
Amir Moslemi,

Arash Ahmadian

Expert Systems with Applications, Год журнала: 2024, Номер 256, С. 124919 - 124919

Опубликована: Июль 31, 2024

Язык: Английский

Процитировано

5

MGMT ProFWise: Unlocking a New Application for Combined Feature Selection and the Rank-Based Weighting Method to Link MGMT Methylation Status to Serum Protein Expression in Patients with Glioblastoma DOI Open Access
Erdal Taşçı, Yajas Shah,

Sarisha Jagasia

и другие.

International Journal of Molecular Sciences, Год журнала: 2024, Номер 25(7), С. 4082 - 4082

Опубликована: Апрель 6, 2024

Glioblastoma (GBM) is a fatal brain tumor with limited treatment options. O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status the central molecular biomarker linked to both response temozolomide, standard chemotherapy drug employed for GBM, and patient survival. However, MGMT captured on tissue which, given difficulty in acquisition, limits use of this feature monitoring. protein expression levels may offer additional insights into mechanistic understanding but, currently, they correlate poorly methylation. The acquiring testing drives need non-invasive methods predict status. Feature selection aims identify most informative features build accurate interpretable prediction models. This study explores new application combined (i.e., LASSO mRMR) rank-based weighting method ProFWise) non-invasively link serum patients GBM. Our provides promising results, reducing dimensionality (by more than 95%) when two large-scale proteomic datasets (7k SomaScan® panel CPTAC) all our analyses. computational results indicate that proposed approach 14 shared biomarkers be helpful diagnostic, prognostic, and/or predictive operations GBM-related processes, further validation.

Язык: Английский

Процитировано

4