2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Год журнала: 2024, Номер unknown, С. 1 - 14
Опубликована: Июнь 27, 2024
Язык: Английский
2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Год журнала: 2024, Номер unknown, С. 1 - 14
Опубликована: Июнь 27, 2024
Язык: Английский
Ironmaking & Steelmaking Processes Products and Applications, Год журнала: 2025, Номер unknown
Опубликована: Янв. 9, 2025
In the pursuit of intelligent manufacturing goals, industrial big data technology has emerged as a key enabler in advancing steel industry. Traditional rolling force (RF) models typically rely on from individual cold production lines, leading to lower accuracy and limited interpretability. To overcome this, an platform been developed, offering complete reliable dataset enhance performance RF prediction models. A data-driven machine learning framework is proposed, employing improved sparrow search algorithm optimise weighting parameters broad system. The Shapley additive explanations method further applied elucidate contributions multivariate features hot rolling, thereby enhancing interpretability predictions. proposed was validated line plant, demonstrating significant advantages over existing state-of-the-art Furthermore, this study demonstrates extensively elaborates impact predictive Industrial application validation that accurately predicts at head cold-rolled strip, enabling feedforward compensation for bending effectively improving flatness defects, confirming method's efficacy.
Язык: Английский
Процитировано
1Sensors, Год журнала: 2024, Номер 24(22), С. 7316 - 7316
Опубликована: Ноя. 15, 2024
Engine fault diagnosis is a critical task in automotive aftermarket management. Developing appropriate fault-labeled datasets can be challenging due to nonlinearity variations and divergence feature distribution among different engine kinds or operating scenarios. To solve this task, study experimentally measures audio emission signals from compression ignition engines vehicles, simulating injector failures, intake hose absence of failures. Based on these faults, hybrid approach applied classify conditions that help the planning decision-making automobile industry. The proposed combines wavelet packet transform (WPT), Markov blanket selection, random convolutional kernel (ROCKET), tree-structured Parzen estimator (TPE) for hyperparameters tuning, ten machine learning (ML) classifiers, such as ridge regression, quadratic discriminant analysis (QDA), naive Bayes,
Язык: Английский
Процитировано
3Logistics, Год журнала: 2025, Номер 9(1), С. 25 - 25
Опубликована: Фев. 8, 2025
Background: Accurate inventory management of intermittent spare parts requires precise demand forecasting. The sporadic and irregular nature demand, characterized by long intervals between occurrences, results in a significant data imbalance, where events are vastly outnumbered zero-demand periods. This challenge has been largely overlooked forecasting research for parts. Methods: proposed model incorporates the Synthetic Minority Oversampling Technique (SMOTE) to balance dataset uses focal loss enhance sensitivity deep learning models rare events. approach was empirically validated comparing model’s Mean Squared Error (MSE) performance Area Under Curve (AUC). Results: ensemble achieved 47% reduction MSE 32% increase AUC, demonstrating substantial improvements accuracy. Conclusions: findings highlight effectiveness method addressing imbalance improving prediction part providing valuable tool management.
Язык: Английский
Процитировано
0Journal of Materials Engineering and Performance, Год журнала: 2025, Номер unknown
Опубликована: Апрель 10, 2025
Язык: Английский
Процитировано
0steel research international, Год журнала: 2024, Номер 95(7)
Опубликована: Апрель 25, 2024
In the field of hot rolling big data, presence different steel types, specifications, and data heterogeneity poses significant challenges to accuracy stability using single machine learning regression technology for prediction. Therefore, this study proposes a hot‐rolled strip crown prediction method that combines clustering fusion modeling. First, article introduces relevant mechanism designing cluster strategies. The optimal strategy is determined through comparative experiments process parameters, size, main material components as features. Subsequently, K‐Means++ algorithm used effectively training testing datasets based on strategy, generating multiple clusters both datasets. Finally, establishes seven models match most suitable model each cluster, matching between rigorous testing. evaluation shows an R 2 value 0.829 root mean square error 3.974. experimental results show proposed outperforms traditional methods in solving multiclass classification heterogeneity, providing strong support intelligent control future.
Язык: Английский
Процитировано
2Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Окт. 3, 2024
Язык: Английский
Процитировано
2Measurement, Год журнала: 2024, Номер unknown, С. 116516 - 116516
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1International Journal of Precision Engineering and Manufacturing, Год журнала: 2024, Номер 25(8), С. 1627 - 1637
Опубликована: Май 23, 2024
Язык: Английский
Процитировано
02022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Год журнала: 2024, Номер unknown, С. 1 - 14
Опубликована: Июнь 27, 2024
Язык: Английский
Процитировано
0