Autoregressive data generation method based on wavelet packet transform and cascaded stochastic quantization for bearing fault diagnosis under unbalanced samples
Engineering Applications of Artificial Intelligence,
Год журнала:
2024,
Номер
138, С. 109402 - 109402
Опубликована: Окт. 11, 2024
Язык: Английский
Multi-step difference-driven domain adversarial network for few-sample fault detection in dynamic industrial systems
Engineering Applications of Artificial Intelligence,
Год журнала:
2025,
Номер
146, С. 110242 - 110242
Опубликована: Фев. 16, 2025
Язык: Английский
Self-learning stationary subspace analysis for fault detection of industrial processes with varying operation conditions
Engineering Applications of Artificial Intelligence,
Год журнала:
2025,
Номер
153, С. 110792 - 110792
Опубликована: Апрель 25, 2025
Язык: Английский
A cloud–edge collaboration based quality-related hierarchical fault detection framework for large-scale manufacturing processes
Expert Systems with Applications,
Год журнала:
2024,
Номер
256, С. 124909 - 124909
Опубликована: Дек. 1, 2024
Язык: Английский
An Adaptive Spatiotemporal Decouple Graph Convolutional Network Based Quality‐Related Fault Detection Method for Complex Industrial Processes
International Journal of Adaptive Control and Signal Processing,
Год журнала:
2024,
Номер
unknown
Опубликована: Сен. 15, 2024
ABSTRACT
With
the
rapid
development
of
industrial
technology,
processes
become
increasingly
complex,
presenting
characteristics
large‐scale
and
multi‐unit
collaboration.
However,
most
current
fault
detection
methods
focus
on
nonlinearity,
dynamics,
other
characteristics,
while
neglecting
spatiotemporal
information.
To
address
this
issue,
an
adaptive
decouple
graph
convolutional
network
based
quality‐related
method
is
proposed
in
article.
First,
temporal
spatial
are
combined
organically
form
joint
training.
Second,
considering
that
fixed
structures
cannot
reflect
dynamic
relationships
among
nodes,
we
weighted
mask
mechanism
to
construct
correlation
embedded
with
priori
knowledge.
Multi‐attention
used
integrate
information,
besides,
designed
a
decoupling
layer
avoid
information
redundancy.
Finally,
establish
regression
model,
latent
variables
extracted
by
layer,
statistic
constructed
Kullback–Leibler
divergence.
The
effectiveness
feasibility
illustrated
hot
strip
mill
process
Tennessee
Eastman
process.
Язык: Английский