An Adaptive Spatiotemporal Decouple Graph Convolutional Network Based Quality‐Related Fault Detection Method for Complex Industrial Processes DOI

Jiangxiao Wu,

Kaixiang Peng, Xueyi Zhang

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер unknown

Опубликована: Сен. 15, 2024

ABSTRACT With the rapid development of industrial technology, processes become increasingly complex, presenting characteristics large‐scale and multi‐unit collaboration. However, most current fault detection methods focus on nonlinearity, dynamics, other characteristics, while neglecting spatiotemporal information. To address this issue, an adaptive decouple graph convolutional network based quality‐related method is proposed in article. First, temporal spatial are combined organically form joint training. Second, considering that fixed structures cannot reflect dynamic relationships among nodes, we weighted mask mechanism to construct correlation embedded with priori knowledge. Multi‐attention used integrate information, besides, designed a decoupling layer avoid information redundancy. Finally, establish regression model, latent variables extracted by layer, statistic constructed Kullback–Leibler divergence. The effectiveness feasibility illustrated hot strip mill process Tennessee Eastman process.

Язык: Английский

Autoregressive data generation method based on wavelet packet transform and cascaded stochastic quantization for bearing fault diagnosis under unbalanced samples DOI
Yawei Sun, Hongfeng Tao, Vladimir Stojanović

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 138, С. 109402 - 109402

Опубликована: Окт. 11, 2024

Язык: Английский

Процитировано

10

Multi-step difference-driven domain adversarial network for few-sample fault detection in dynamic industrial systems DOI

Ruiyi Fang,

Kai Wang, Xiaofeng Yuan

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 146, С. 110242 - 110242

Опубликована: Фев. 16, 2025

Язык: Английский

Процитировано

0

Self-learning stationary subspace analysis for fault detection of industrial processes with varying operation conditions DOI
Dehao Wu, Jianan Deng, Jingxin Zhang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 153, С. 110792 - 110792

Опубликована: Апрель 25, 2025

Язык: Английский

Процитировано

0

A cloud–edge collaboration based quality-related hierarchical fault detection framework for large-scale manufacturing processes DOI
Xueyi Zhang, Liang Ma, Kaixiang Peng

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 256, С. 124909 - 124909

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

3

An Adaptive Spatiotemporal Decouple Graph Convolutional Network Based Quality‐Related Fault Detection Method for Complex Industrial Processes DOI

Jiangxiao Wu,

Kaixiang Peng, Xueyi Zhang

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер unknown

Опубликована: Сен. 15, 2024

ABSTRACT With the rapid development of industrial technology, processes become increasingly complex, presenting characteristics large‐scale and multi‐unit collaboration. However, most current fault detection methods focus on nonlinearity, dynamics, other characteristics, while neglecting spatiotemporal information. To address this issue, an adaptive decouple graph convolutional network based quality‐related method is proposed in article. First, temporal spatial are combined organically form joint training. Second, considering that fixed structures cannot reflect dynamic relationships among nodes, we weighted mask mechanism to construct correlation embedded with priori knowledge. Multi‐attention used integrate information, besides, designed a decoupling layer avoid information redundancy. Finally, establish regression model, latent variables extracted by layer, statistic constructed Kullback–Leibler divergence. The effectiveness feasibility illustrated hot strip mill process Tennessee Eastman process.

Язык: Английский

Процитировано

1