Rock Mechanics and Rock Engineering, Год журнала: 2024, Номер 57(8), С. 6227 - 6258
Опубликована: Апрель 1, 2024
Язык: Английский
Rock Mechanics and Rock Engineering, Год журнала: 2024, Номер 57(8), С. 6227 - 6258
Опубликована: Апрель 1, 2024
Язык: Английский
Earth Science Informatics, Год журнала: 2025, Номер 18(2)
Опубликована: Янв. 21, 2025
Язык: Английский
Процитировано
2Construction and Building Materials, Год журнала: 2022, Номер 329, С. 127082 - 127082
Опубликована: Март 19, 2022
Язык: Английский
Процитировано
59Archives of Computational Methods in Engineering, Год журнала: 2022, Номер 30(3), С. 1979 - 2012
Опубликована: Дек. 20, 2022
Abstract The article reviewed the four major Bioinspired intelligent algorithms for agricultural applications, namely ecological, swarm-intelligence-based, ecology-based, and multi-objective algorithms. key emphasis was placed on variants of swarm intelligence algorithms, artificial bee colony (ABC), genetic algorithm, flower pollination algorithm (FPA), particle swarm, ant colony, firefly fish Krill herd because they had been widely employed in sector. There a broad consensus among scholars that certain BIAs' were more effective than others. For example, Ant Colony Optimization Algorithm best suited farm machinery path optimization pest detection, other applications. On contrary, useful determining plant evapotranspiration rates, which predicted water requirements irrigation process. Despite promising adoption hyper-heuristic agriculture remained low. No universal could perform multiple functions farms; different designed to specific functions. Secondary concerns relate data integrity cyber security, considering history cyber-attacks smart farms. concerns, benefits associated with BIAs outweighed risks. average, farmers can save 647–1866 L fuel is equivalent US$734-851, use GPS-guided systems. accuracy mitigated risk errors applying pesticides, fertilizers, irrigation, crop monitoring better yields.
Язык: Английский
Процитировано
43Case Studies in Construction Materials, Год журнала: 2023, Номер 18, С. e01845 - e01845
Опубликована: Янв. 11, 2023
The mixing ratio of the raw materials has a significant impact on concrete compressive strength. Although strength can be inferred from mix ratio, it is frequently challenging to determine how each parameter affects results. In this study, an Explainable Boosting Machine (EBM) applied predict and explain contribution factors Meanwhile, combined algorithm selection hyperparameter optimization problem in machine learning implemented by employing Bayesian technique. A dataset consisting 1030 test data been used for model building. results show that iteratively constructs algorithmic/hyperparametric identifies optimal point space, significantly reducing time consumption ML building process. terms prediction performance, EBM shows excellent with R2 = 0.93, RMSE 4.33, MAE 3.10. allows one fully interpret individual features both global local aspects, which compression further determined.
Язык: Английский
Процитировано
40Journal of Building Engineering, Год журнала: 2022, Номер 58, С. 104997 - 104997
Опубликована: Июль 31, 2022
Язык: Английский
Процитировано
39Geotechnical and Geological Engineering, Год журнала: 2023, Номер 42(3), С. 1729 - 1760
Опубликована: Сен. 18, 2023
Язык: Английский
Процитировано
38Construction and Building Materials, Год журнала: 2023, Номер 371, С. 130778 - 130778
Опубликована: Фев. 24, 2023
Язык: Английский
Процитировано
35Materials Today Communications, Год журнала: 2023, Номер 35, С. 106282 - 106282
Опубликована: Май 26, 2023
Язык: Английский
Процитировано
35Structures, Год журнала: 2023, Номер 57, С. 105062 - 105062
Опубликована: Авг. 18, 2023
Язык: Английский
Процитировано
31Structures, Год журнала: 2023, Номер 53, С. 514 - 536
Опубликована: Апрель 29, 2023
Язык: Английский
Процитировано
27