The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер unknown
Опубликована: Янв. 8, 2024
Язык: Английский
The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер unknown
Опубликована: Янв. 8, 2024
Язык: Английский
Case Studies in Construction Materials, Год журнала: 2024, Номер 20, С. e02991 - e02991
Опубликована: Фев. 19, 2024
Ultra-high-performance concrete (UHPC) is a cutting-edge and advanced constructions material known for its exceptional mechanical properties durability. Recently, machine learning (ML) methods play pivotal role in predicting the compressive strength (CS) of UHPC evaluating dominant input parameters suitable mix design. This research, three hybrid models were utilized: Random Forest (RF), AdaBoost (AB), Gradient Boosting (GB) algorithms with particle swarm optimization (PSO), namely AB-PSO, RF-PSO, GB-PSO, to predict perform SHAP (Shapley additive explanation) analysis. To build predictive ML models, dataset 810 experimental data points was collected from published literature. Additionally, interaction plots generated visualize impact each feature on specific prediction made by model. Our results indicate that better than traditional GB-PSO model showed high accuracy among models. The had higher precision compared other two It achieved R2 values 0.9913 during training stage 0.9804 testing CS. analysis revealed age, fiber, cement, silica fume, superplasticizer significant influence strength, while comparatively lower. PDP (Partial Dependence Plots) amount individually variables can be calculated simply designed These findings are valuable construction applications offer essential insights design engineers builders, aiding their understanding significance component UHPC.
Язык: Английский
Процитировано
54Results in Engineering, Год журнала: 2025, Номер unknown, С. 103909 - 103909
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Journal of Cleaner Production, Год журнала: 2025, Номер 489, С. 144734 - 144734
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Construction and Building Materials, Год журнала: 2024, Номер 442, С. 137509 - 137509
Опубликована: Июль 31, 2024
Язык: Английский
Процитировано
9Process Safety and Environmental Protection, Год журнала: 2024, Номер 189, С. 89 - 101
Опубликована: Июнь 18, 2024
Язык: Английский
Процитировано
8Biomimetics, Год журнала: 2024, Номер 9(9), С. 544 - 544
Опубликована: Сен. 9, 2024
The performance of ultra-high-performance concrete (UHPC) allows for the design and creation thinner elements with superior overall durability. compressive strength UHPC is a value that can be reached after certain period time through series tests cures. However, this estimated by machine-learning methods. In study, multilayer perceptron (MLP) Stacking Regressor, an ensemble models, used to predict high-performance concrete. Then, ML model’s explained feature importance analysis Shapley additive explanations (SHAPs), developed models are interpreted. effect using different random splits training test sets has been investigated. It was observed stacking regressor, which combined outputs Extreme Gradient Boosting (XGBoost), Category (CatBoost), Light Machine (LightGBM), Extra Trees regressors forest as final estimator, performed significantly better than MLP regressor. shown predicted regressor average R2 score 0.971 on set. On other hand, model 0.909. results SHAP showed age amounts silica fume, fiber, superplasticizer, cement, aggregate, water have greatest impact predictions.
Язык: Английский
Процитировано
5Journal of Building Engineering, Год журнала: 2024, Номер 98, С. 111041 - 111041
Опубликована: Окт. 12, 2024
Язык: Английский
Процитировано
5Structures, Год журнала: 2023, Номер 58, С. 105600 - 105600
Опубликована: Дек. 1, 2023
Язык: Английский
Процитировано
12Journal of Building Pathology and Rehabilitation, Год журнала: 2024, Номер 9(2)
Опубликована: Май 24, 2024
Язык: Английский
Процитировано
4Composites Part A Applied Science and Manufacturing, Год журнала: 2024, Номер unknown, С. 108555 - 108555
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
4