Detección geoespacial de jales mineros con imágenes de alta resolución y determinación de metales pesados en Tejamen, Durango, México DOI Creative Commons

Jonathan Gabriel Escobar-Flores,

Sarahi Sandoval

Investigaciones Geográficas Boletín del Instituto de Geografía, Год журнала: 2023, Номер 112

Опубликована: Окт. 19, 2023

En esta investigación se detectaron con imágenes Worldview2 tres jales mineros abandonados. Su localización confirmó multiespectrales obtenidas por un vehículo aéreo no tripulado. A estos jales, y otros 13 sitios donde reportó actividad minera, les realizó una cuantificación de los siguientes metales pesados: cadmio (Cd) plomo (Pb), así como del metaloide arsénico (As), mediante espectrofotometría absorción atómica. Para analizar la distribución espacial elementos generó base datos mediciones encontrados más 22 reportados centros experimentación Servicio Geológico Mexicano. Con información generaron mapas interpolación para cada elemento encontró que valores Pb ubicados en el poblado son mayores a 2000 ppm, patrón similar presentó As superiores 1500 mientras Cd fueron menores 30 ppm. Se concluye tanto están encima NOM-147-SEMARNAT/SSA1-2004, lo tanto, es urgente plan remediación esos suelos, principalmente localizaron dentro las inmediaciones presa. recomienda fitoremediación Dodonaea viscosa recientemente ha reportado su eficacia retención pesados contenidos suelos minas abandonadas.

Monitoring of soil heavy metals based on hyperspectral remote sensing: A review DOI
Yulong Wang, Bin Zou, Liyuan Chai

и другие.

Earth-Science Reviews, Год журнала: 2024, Номер 254, С. 104814 - 104814

Опубликована: Май 15, 2024

Язык: Английский

Процитировано

16

Inversion of heavy metal content in soil using hyperspectral characteristic bands-based machine learning method DOI
Zhiyong Zou, Qianlong Wang, Qingsong Wu

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 355, С. 120503 - 120503

Опубликована: Март 1, 2024

Язык: Английский

Процитировано

11

A 3D-2DCNN-CA approach for enhanced classification of hickory tree species using UAV-based hyperspectral imaging DOI
Liuchang Xu,

Chenghao Lu,

Tong Zhou

и другие.

Microchemical Journal, Год журнала: 2024, Номер 199, С. 109981 - 109981

Опубликована: Янв. 13, 2024

Язык: Английский

Процитировано

8

Estimation of soil organic matter content based on spectral indices constructed by improved Hapke model DOI Creative Commons
Jing Yuan, Jichao Gao, Bo Yu

и другие.

Geoderma, Год журнала: 2024, Номер 443, С. 116823 - 116823

Опубликована: Март 1, 2024

Soil organic matter (SOM) content is an important indicator to measure the degradation degree and fertility of soil. However, most current SOM prediction methods are based on statistical learning theory, overlooking transmission process physical mechanism reflectance spectra, lacking basis soil remote sensing. In this study, a method for estimating spectral indices constructed by improved Hapke model was proposed, which started from radiative transfer spectra used converted r single scattering albedo ω as means construct indices. The accuracy these with sensitive bands selected laboratory-measured data (Data1) validated using field high-spectral (Data2), potential application in sensing multispectral (Data3). As expected, exhibit good both hyper-spectral (TBI37: R2P 73.88; RPD 2.02) (TBI17: R2P, 67.19; 1.78). comparative results indicate that, terms stability, outperform those reflectance. This study reduces complexity calibration effectively, have clear meaning fast high at large scales.

Язык: Английский

Процитировано

7

Comparison of global and zonal modeling strategies - A case study of soil organic matter and C:N ratio mapping in Altay, Xinjiang, China DOI Creative Commons
Hongwu Liang,

Guli Japaer,

Changyuan Yu

и другие.

Ecological Informatics, Год журнала: 2024, Номер 84, С. 102882 - 102882

Опубликована: Ноя. 17, 2024

Язык: Английский

Процитировано

5

A Deep Spectral–Spatial Residual Attention Network for Hyperspectral Image Classification DOI Creative Commons
Koushikey Chhapariya, Krishna Mohan Buddhiraju, Anil Kumar

и другие.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Год журнала: 2024, Номер 17, С. 15393 - 15406

Опубликована: Янв. 1, 2024

In recent years, deep learning algorithms, particularly convolutional neural networks (CNNs), have significantly improved the performance of hyperspectral image (HSI) classification. However, due to high dimensionality HSI and limited training samples, network causes model overfitting. Additionally, considering all bands datasets equally for feature being unable distinguish between edge center pixels a neighborhood reduces classification accuracy. Thus, in this paper, we propose an end-to-end spectral-spatial residual attention (DSSpRAN) motivated by mechanism human visual system The DSSpRAN considers input data as 3-D cube instead using reduction methods. proposed simultaneously incorporates spectral spatial features (SRAN) (SpRAN). SRAN, weights are assigned learned adaptively select essential from each band. SpRAN enhances importance classifying nearby pixel pixel. It assigns same label that surrounding pixels, thus limiting with different labels. method has been evaluated on five prove state-of-the-art various land use cover scenarios. A comprehensive qualitative quantitative analysis results shows outperforms other

Язык: Английский

Процитировано

4

Construction of soil moisture three-band indices with Vis-NIR spectroscopy based on the Kubelka-Munk and Hapke model DOI Creative Commons
Jing Yuan,

Yuteng Liu,

Changxiang Yan

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 116979 - 116979

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Soil Organic Carbon Assessment Using Remote-Sensing Data and Machine Learning: A Systematic Literature Review DOI Creative Commons
Ana Cristina De Jesus Lima, Júlio Castro Lopes, Rui Pedro Lopes

и другие.

Remote Sensing, Год журнала: 2025, Номер 17(5), С. 882 - 882

Опубликована: Март 1, 2025

In the current global change scenario, valuable tools for improving soils and increasing both agricultural productivity food security, together with effective actions to mitigate impacts of ongoing climate trends, are priority issues. Soil Organic Carbon (SOC) acts on these two topics, as C is a core element soil organic matter, an essential driver fertility, becomes problematic when disposed in atmosphere its gaseous form. Laboratory methods measure SOC expensive time-consuming. This Systematic Literature Review (SLR) aims identify techniques alternative ways estimate using Remote-Sensing (RS) spectral data computer process this database. SLR was conducted Meta-Analysis (PRISMA) methodology, highlighting use Deep Learning (DL), traditional neural networks, other machine-learning models, input were used SOC. The concludes that Sentinel satellites, particularly Sentinel-2, frequently used. Despite limited datasets, DL models demonstrated robust performance assessed by R2 RMSE. Key data, such vegetation indices (e.g., NDVI, SAVI, EVI) digital elevation consistently correlated predictions. These findings underscore potential combining RS advanced artificial-intelligence efficient scalable monitoring.

Язык: Английский

Процитировано

0

Nondestructive detection of cadmium content in oilseed rape leaves under different silicon environments using deep transfer learning and Vis-NIR hyperspectral imaging DOI
Xin Zhou, Liu Yang,

Chunjiang Zhao

и другие.

Food Chemistry, Год журнала: 2025, Номер 479, С. 143799 - 143799

Опубликована: Март 8, 2025

Язык: Английский

Процитировано

0

Native trees on abandoned mine land: From environmental remediation to bioeconomy DOI
Paulo J.C. Favas, João Pratas, Ritu Chaturvedi

и другие.

Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 257 - 287

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

3