Detección geoespacial de jales mineros con imágenes de alta resolución y determinación de metales pesados en Tejamen, Durango, México DOI Creative Commons

Jonathan Gabriel Escobar-Flores,

Sarahi Sandoval

Investigaciones Geográficas Boletín del Instituto de Geografía, Journal Year: 2023, Volume and Issue: 112

Published: Oct. 19, 2023

En esta investigación se detectaron con imágenes Worldview2 tres jales mineros abandonados. Su localización confirmó multiespectrales obtenidas por un vehículo aéreo no tripulado. A estos jales, y otros 13 sitios donde reportó actividad minera, les realizó una cuantificación de los siguientes metales pesados: cadmio (Cd) plomo (Pb), así como del metaloide arsénico (As), mediante espectrofotometría absorción atómica. Para analizar la distribución espacial elementos generó base datos mediciones encontrados más 22 reportados centros experimentación Servicio Geológico Mexicano. Con información generaron mapas interpolación para cada elemento encontró que valores Pb ubicados en el poblado son mayores a 2000 ppm, patrón similar presentó As superiores 1500 mientras Cd fueron menores 30 ppm. Se concluye tanto están encima NOM-147-SEMARNAT/SSA1-2004, lo tanto, es urgente plan remediación esos suelos, principalmente localizaron dentro las inmediaciones presa. recomienda fitoremediación Dodonaea viscosa recientemente ha reportado su eficacia retención pesados contenidos suelos minas abandonadas.

Monitoring of soil heavy metals based on hyperspectral remote sensing: A review DOI
Yulong Wang, Bin Zou, Liyuan Chai

et al.

Earth-Science Reviews, Journal Year: 2024, Volume and Issue: 254, P. 104814 - 104814

Published: May 15, 2024

Language: Английский

Citations

16

Inversion of heavy metal content in soil using hyperspectral characteristic bands-based machine learning method DOI
Zhiyong Zou, Qianlong Wang, Qingsong Wu

et al.

Journal of Environmental Management, Journal Year: 2024, Volume and Issue: 355, P. 120503 - 120503

Published: March 1, 2024

Language: Английский

Citations

11

A 3D-2DCNN-CA approach for enhanced classification of hickory tree species using UAV-based hyperspectral imaging DOI
Liuchang Xu,

Chenghao Lu,

Tong Zhou

et al.

Microchemical Journal, Journal Year: 2024, Volume and Issue: 199, P. 109981 - 109981

Published: Jan. 13, 2024

Language: Английский

Citations

8

Estimation of soil organic matter content based on spectral indices constructed by improved Hapke model DOI Creative Commons
Jing Yuan, Jichao Gao, Bo Yu

et al.

Geoderma, Journal Year: 2024, Volume and Issue: 443, P. 116823 - 116823

Published: March 1, 2024

Soil organic matter (SOM) content is an important indicator to measure the degradation degree and fertility of soil. However, most current SOM prediction methods are based on statistical learning theory, overlooking transmission process physical mechanism reflectance spectra, lacking basis soil remote sensing. In this study, a method for estimating spectral indices constructed by improved Hapke model was proposed, which started from radiative transfer spectra used converted r single scattering albedo ω as means construct indices. The accuracy these with sensitive bands selected laboratory-measured data (Data1) validated using field high-spectral (Data2), potential application in sensing multispectral (Data3). As expected, exhibit good both hyper-spectral (TBI37: R2P 73.88; RPD 2.02) (TBI17: R2P, 67.19; 1.78). comparative results indicate that, terms stability, outperform those reflectance. This study reduces complexity calibration effectively, have clear meaning fast high at large scales.

Language: Английский

Citations

7

Comparison of global and zonal modeling strategies - A case study of soil organic matter and C:N ratio mapping in Altay, Xinjiang, China DOI Creative Commons
Hongwu Liang,

Guli Japaer,

Changyuan Yu

et al.

Ecological Informatics, Journal Year: 2024, Volume and Issue: 84, P. 102882 - 102882

Published: Nov. 17, 2024

Language: Английский

Citations

5

A Deep Spectral–Spatial Residual Attention Network for Hyperspectral Image Classification DOI Creative Commons
Koushikey Chhapariya, Krishna Mohan Buddhiraju, Anil Kumar

et al.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Journal Year: 2024, Volume and Issue: 17, P. 15393 - 15406

Published: Jan. 1, 2024

In recent years, deep learning algorithms, particularly convolutional neural networks (CNNs), have significantly improved the performance of hyperspectral image (HSI) classification. However, due to high dimensionality HSI and limited training samples, network causes model overfitting. Additionally, considering all bands datasets equally for feature being unable distinguish between edge center pixels a neighborhood reduces classification accuracy. Thus, in this paper, we propose an end-to-end spectral-spatial residual attention (DSSpRAN) motivated by mechanism human visual system The DSSpRAN considers input data as 3-D cube instead using reduction methods. proposed simultaneously incorporates spectral spatial features (SRAN) (SpRAN). SRAN, weights are assigned learned adaptively select essential from each band. SpRAN enhances importance classifying nearby pixel pixel. It assigns same label that surrounding pixels, thus limiting with different labels. method has been evaluated on five prove state-of-the-art various land use cover scenarios. A comprehensive qualitative quantitative analysis results shows outperforms other

Language: Английский

Citations

4

Construction of soil moisture three-band indices with Vis-NIR spectroscopy based on the Kubelka-Munk and Hapke model DOI Creative Commons
Jing Yuan,

Yuteng Liu,

Changxiang Yan

et al.

Measurement, Journal Year: 2025, Volume and Issue: unknown, P. 116979 - 116979

Published: Feb. 1, 2025

Language: Английский

Citations

0

Soil Organic Carbon Assessment Using Remote-Sensing Data and Machine Learning: A Systematic Literature Review DOI Creative Commons
Ana Cristina De Jesus Lima, Júlio Castro Lopes, Rui Pedro Lopes

et al.

Remote Sensing, Journal Year: 2025, Volume and Issue: 17(5), P. 882 - 882

Published: March 1, 2025

In the current global change scenario, valuable tools for improving soils and increasing both agricultural productivity food security, together with effective actions to mitigate impacts of ongoing climate trends, are priority issues. Soil Organic Carbon (SOC) acts on these two topics, as C is a core element soil organic matter, an essential driver fertility, becomes problematic when disposed in atmosphere its gaseous form. Laboratory methods measure SOC expensive time-consuming. This Systematic Literature Review (SLR) aims identify techniques alternative ways estimate using Remote-Sensing (RS) spectral data computer process this database. SLR was conducted Meta-Analysis (PRISMA) methodology, highlighting use Deep Learning (DL), traditional neural networks, other machine-learning models, input were used SOC. The concludes that Sentinel satellites, particularly Sentinel-2, frequently used. Despite limited datasets, DL models demonstrated robust performance assessed by R2 RMSE. Key data, such vegetation indices (e.g., NDVI, SAVI, EVI) digital elevation consistently correlated predictions. These findings underscore potential combining RS advanced artificial-intelligence efficient scalable monitoring.

Language: Английский

Citations

0

Nondestructive detection of cadmium content in oilseed rape leaves under different silicon environments using deep transfer learning and Vis-NIR hyperspectral imaging DOI
Xin Zhou, Liu Yang,

Chunjiang Zhao

et al.

Food Chemistry, Journal Year: 2025, Volume and Issue: 479, P. 143799 - 143799

Published: March 8, 2025

Language: Английский

Citations

0

Native trees on abandoned mine land: From environmental remediation to bioeconomy DOI
Paulo J.C. Favas, João Pratas, Ritu Chaturvedi

et al.

Elsevier eBooks, Journal Year: 2024, Volume and Issue: unknown, P. 257 - 287

Published: Jan. 1, 2024

Language: Английский

Citations

3