A novel hybrid model for building heat load forecasting based on multivariate Empirical modal decomposition DOI
Yiran Li,

Neng Zhu,

Yingzhen Hou

и другие.

Building and Environment, Год журнала: 2023, Номер 237, С. 110317 - 110317

Опубликована: Апрель 14, 2023

Язык: Английский

A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction DOI

Jinlin Xiong,

Peng Tian,

Zihan Tao

и другие.

Energy, Год журнала: 2022, Номер 266, С. 126419 - 126419

Опубликована: Дек. 13, 2022

Язык: Английский

Процитировано

153

Learning based short term wind speed forecasting models for smart grid applications: An extensive review and case study DOI
Vikash Kumar Saini, Rajesh Kumar, Ameena Saad Al–Sumaiti

и другие.

Electric Power Systems Research, Год журнала: 2023, Номер 222, С. 109502 - 109502

Опубликована: Июнь 1, 2023

Язык: Английский

Процитировано

46

Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method DOI
Irene Karijadi, Shuo‐Yan Chou, Anindhita Dewabharata

и другие.

Renewable Energy, Год журнала: 2023, Номер 218, С. 119357 - 119357

Опубликована: Сен. 22, 2023

Язык: Английский

Процитировано

43

A short-term wind power forecasting method based on multivariate signal decomposition and variable selection DOI
Ting Yang, Zhenning Yang, Fei Li

и другие.

Applied Energy, Год журнала: 2024, Номер 360, С. 122759 - 122759

Опубликована: Фев. 6, 2024

Язык: Английский

Процитировано

26

Variational mode decomposition and bagging extreme learning machine with multi-objective optimization for wind power forecasting DOI
Matheus Henrique Dal Molin Ribeiro, Ramon Gomes da Silva, Sinvaldo Rodrigues Moreno

и другие.

Applied Intelligence, Год журнала: 2024, Номер 54(4), С. 3119 - 3134

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

23

A wavelet-LSTM model for short-term wind power forecasting using wind farm SCADA data DOI
Zhaohua Liu, Chang-Tong Wang, Hua‐Liang Wei

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 247, С. 123237 - 123237

Опубликована: Янв. 19, 2024

Язык: Английский

Процитировано

18

Wind power forecasting based on new hybrid model with TCN residual modification DOI Creative Commons

Jiaojiao Zhu,

Liancheng Su, Yingwei Li

и другие.

Energy and AI, Год журнала: 2022, Номер 10, С. 100199 - 100199

Опубликована: Сен. 6, 2022

Wind energy has been widely utilized to alleviate the shortage of fossil resources. When wind power is integrated into grid on a large scale, grid's stability severely harmed due fluctuating and intermittent properties speed. Accurate forecasts help formulate good operational strategies for farms. A short-term forecasting method based new hybrid model proposed increase accuracy forecast. Firstly, time series are separated using complete ensemble empirical mode decomposition with adaptive noise obtain multiple components, which then predicted support vector regression machine optimized through search cross validation (GridSearchCV) algorithm. Secondly, residual modification temporal convolutional network constructed, variables high correlation selected as input features predict residuals power. Finally, prediction compared other models actual data farm demonstrate validity described method, results reveal that better performance. © 2017 Elsevier Inc. All rights reserved.

Язык: Английский

Процитировано

48

SCADA system dataset exploration and machine learning based forecast for wind turbines DOI
Upma Singh, M. Rizwan

Results in Engineering, Год журнала: 2022, Номер 16, С. 100640 - 100640

Опубликована: Сен. 13, 2022

Язык: Английский

Процитировано

41

Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction DOI
Guolian Hou, Junjie Wang, Yuzhen Fan

и другие.

Energy, Год журнала: 2023, Номер 286, С. 129640 - 129640

Опубликована: Ноя. 13, 2023

Язык: Английский

Процитировано

38

Short-term wind power prediction based on modal reconstruction and CNN-BiLSTM DOI Creative Commons
Zheng Li,

Ruosi Xu,

Xiaorui Luo

и другие.

Energy Reports, Год журнала: 2023, Номер 9, С. 6449 - 6460

Опубликована: Июнь 16, 2023

Accurate prediction of short-term wind power plays an important role in the safe operation and economic dispatch grid. In response to current single algorithm that cannot further improve accuracy, this study proposes a combined model based on data processing, signal decomposition, deep learning. First, outliers original can affect accuracy. This detects by Z-score method fills them with cubic spline interpolation ensure integrity data. Second, for volatility power, time series is decomposed using complete ensemble empirical modal decomposition adaptive noise (CEEMDAN). The component complexity calculated sample entropy (SE), components are reconstructed according SE size Finally, traditional convolutional neural network (CNN) structure improved bi-directional long memory (BiLSTM) used extract feature links between superimpose results each obtain final value. experimental demonstrate hybrid proposed has better performance terms performance.

Язык: Английский

Процитировано

24