Building and Environment, Год журнала: 2023, Номер 237, С. 110317 - 110317
Опубликована: Апрель 14, 2023
Язык: Английский
Building and Environment, Год журнала: 2023, Номер 237, С. 110317 - 110317
Опубликована: Апрель 14, 2023
Язык: Английский
Energy, Год журнала: 2022, Номер 266, С. 126419 - 126419
Опубликована: Дек. 13, 2022
Язык: Английский
Процитировано
153Electric Power Systems Research, Год журнала: 2023, Номер 222, С. 109502 - 109502
Опубликована: Июнь 1, 2023
Язык: Английский
Процитировано
46Renewable Energy, Год журнала: 2023, Номер 218, С. 119357 - 119357
Опубликована: Сен. 22, 2023
Язык: Английский
Процитировано
43Applied Energy, Год журнала: 2024, Номер 360, С. 122759 - 122759
Опубликована: Фев. 6, 2024
Язык: Английский
Процитировано
26Applied Intelligence, Год журнала: 2024, Номер 54(4), С. 3119 - 3134
Опубликована: Фев. 1, 2024
Язык: Английский
Процитировано
23Expert Systems with Applications, Год журнала: 2024, Номер 247, С. 123237 - 123237
Опубликована: Янв. 19, 2024
Язык: Английский
Процитировано
18Energy and AI, Год журнала: 2022, Номер 10, С. 100199 - 100199
Опубликована: Сен. 6, 2022
Wind energy has been widely utilized to alleviate the shortage of fossil resources. When wind power is integrated into grid on a large scale, grid's stability severely harmed due fluctuating and intermittent properties speed. Accurate forecasts help formulate good operational strategies for farms. A short-term forecasting method based new hybrid model proposed increase accuracy forecast. Firstly, time series are separated using complete ensemble empirical mode decomposition with adaptive noise obtain multiple components, which then predicted support vector regression machine optimized through search cross validation (GridSearchCV) algorithm. Secondly, residual modification temporal convolutional network constructed, variables high correlation selected as input features predict residuals power. Finally, prediction compared other models actual data farm demonstrate validity described method, results reveal that better performance. © 2017 Elsevier Inc. All rights reserved.
Язык: Английский
Процитировано
48Results in Engineering, Год журнала: 2022, Номер 16, С. 100640 - 100640
Опубликована: Сен. 13, 2022
Язык: Английский
Процитировано
41Energy, Год журнала: 2023, Номер 286, С. 129640 - 129640
Опубликована: Ноя. 13, 2023
Язык: Английский
Процитировано
38Energy Reports, Год журнала: 2023, Номер 9, С. 6449 - 6460
Опубликована: Июнь 16, 2023
Accurate prediction of short-term wind power plays an important role in the safe operation and economic dispatch grid. In response to current single algorithm that cannot further improve accuracy, this study proposes a combined model based on data processing, signal decomposition, deep learning. First, outliers original can affect accuracy. This detects by Z-score method fills them with cubic spline interpolation ensure integrity data. Second, for volatility power, time series is decomposed using complete ensemble empirical modal decomposition adaptive noise (CEEMDAN). The component complexity calculated sample entropy (SE), components are reconstructed according SE size Finally, traditional convolutional neural network (CNN) structure improved bi-directional long memory (BiLSTM) used extract feature links between superimpose results each obtain final value. experimental demonstrate hybrid proposed has better performance terms performance.
Язык: Английский
Процитировано
24