Journal of Thermal Analysis and Calorimetry, Год журнала: 2024, Номер 149(12), С. 5843 - 5869
Опубликована: Июнь 1, 2024
Язык: Английский
Journal of Thermal Analysis and Calorimetry, Год журнала: 2024, Номер 149(12), С. 5843 - 5869
Опубликована: Июнь 1, 2024
Язык: Английский
Solar Energy Materials and Solar Cells, Год журнала: 2023, Номер 253, С. 112207 - 112207
Опубликована: Фев. 8, 2023
Язык: Английский
Процитировано
91Journal of Energy Chemistry, Год журнала: 2023, Номер 82, С. 359 - 374
Опубликована: Апрель 10, 2023
Язык: Английский
Процитировано
78Energy & Fuels, Год журнала: 2024, Номер 38(3), С. 1692 - 1712
Опубликована: Янв. 19, 2024
Modern machine learning (ML) techniques are making inroads in every aspect of renewable energy for optimization and model prediction. The effective utilization ML the development scaling up systems needs a high degree accountability. However, most approaches currently use termed black box since their work is difficult to comprehend. Explainable artificial intelligence (XAI) an attractive option solve issue poor interoperability black-box methods. This review investigates relationship between (RE) XAI. It emphasizes potential advantages XAI improving performance efficacy RE systems. realized that although integration with has enormous alter how produced consumed, possible hazards barriers remain be overcome, particularly concerning transparency, accountability, fairness. Thus, extensive research required address societal ethical implications using create standardized data sets evaluation metrics. In summary, this paper shows potential, perspectives, opportunities, challenges application system management operation aiming target efficient energy-use goals more sustainable trustworthy future.
Язык: Английский
Процитировано
53Process Safety and Environmental Protection, Год журнала: 2024, Номер 183, С. 46 - 58
Опубликована: Янв. 5, 2024
Язык: Английский
Процитировано
22Case Studies in Thermal Engineering, Год журнала: 2024, Номер 55, С. 104144 - 104144
Опубликована: Фев. 22, 2024
Solar thermal air collectors are economically efficient for the purpose of heating in specific applications. This research examines efficiency a solar collector called jet impingement (JISTAC) that is fitted with discrete multi-arc-shaped ribs (DMASRs) utilizing soft computing techniques. Linear Regression (LR), M5P, Gaussian Process (GP), and Random Forest (RF) used to predict Nusselt number (Nu), friction factor (f), thermohydraulic performance (ηthp) JISTAC. DMASRs absorber plates different relative rib height (0.025–0.047), width (0.32–1.72), arc angle (35°–65°), distance (0.27–0.86), pitch (0.58–3.1) were used. The tests yielded 245 data sets, 173 assigned training 72 testing. GP surpasses other models owing its minimum error maximum correlation coefficient value. model has MAE 0.0347, RMSE 0.0564, RAE 10.88%, RRSE 12.77%, CC value 0.9920. Furthermore, it 99%, making most prominent among models. results indicate quite precise predicting ηthp
Язык: Английский
Процитировано
19Journal of Energy Storage, Год журнала: 2022, Номер 59, С. 106438 - 106438
Опубликована: Дек. 27, 2022
Язык: Английский
Процитировано
53Waste Management, Год журнала: 2022, Номер 154, С. 96 - 104
Опубликована: Окт. 10, 2022
Carbon nanotube (CNT), has been demonstrated as a promising high-value product from thermal chemical conversion of waste plastics and securing new applications is an important prerequisite for large-scale production CNT waste-plastic recycling. In this study, CNT, produced plastic through vapor deposition (pCNT), was applied nanofiller in phase change material (PCM), affording pCNT-PCM composites. Compared with pure PCM, the addition 5.0 wt% pCNT rendered peak melting temperature increase by 1.3 ℃, latent heat retain 90.7%, conductivity 104%. The results morphological analysis leakage testing confirmed that similar PCM encapsulation performance shape stability to those commercial CNT. formation uniform cluster networks allowed large loading into on premise free change, responsible high inside homogeneous phase. Thus, resulting capillary forces retained capacity suitable prohibited matrix outside during re-melting ratio increased. Therefore, as-prepared composite believed have potential cCNT shows prominent flowable conductive filler battery management systems.
Язык: Английский
Процитировано
43Scientific Reports, Год журнала: 2022, Номер 12(1)
Опубликована: Дек. 21, 2022
In this study, the rheological behavior and dynamic viscosity of 10W40 engine oil in presence ternary-hybrid nanomaterials cerium oxide (CeO2), graphene (GO), silica aerogel (SA) were investigated experimentally. Nanofluid was measured over a volume fraction range VF = 0.25-1.5%, temperature T 5-55 °C, shear rate SR 40-1000 rpm. The preparation nanofluids involved two-step process, dispersed SAE using magnetic stirrer ultrasonic device. addition, CeO2, GO, SA nanoadditives underwent X-ray diffraction-based structural analysis. non-Newtonian (pseudoplastic) nanofluid at all temperatures fractions is revealed by analyzing stress, viscosity, power-law model coefficients. However, tend to Newtonian low temperatures. For instance, declines with increasing between 4.51% (at 5 °C) 41.59% 55 for 1.5 vol% nanofluid. experimental results demonstrated that decreasing fraction. assuming constant 100 rpm increase from increases least 95.05% (base fluid) no more than 95.82% (1.5 nanofluid). Furthermore, 0 1.5%, minimum 14.74% maximum 35.94% °C). Moreover, different methods (COMBI algorithm, GMDH-type ANN, RSM) used develop models nanofluid's their accuracy complexity compared. COMBI algorithm R2 0.9995 had highest among developed models. Additionally, RSM able generate predictive complexity.
Язык: Английский
Процитировано
40Journal of Water Reuse and Desalination, Год журнала: 2023, Номер unknown
Опубликована: Фев. 1, 2023
Abstract The amount of particles and organic matter in wash-waters effluent from the processing fruits vegetables determines whether they need to be treated fulfil regulatory standards for their intended use. This research proposes a novel technique photovoltaic cell-based renewable energy saline water analysis using oxidation process deep learning techniques. Here, is carried out based on Markov fuzzy-based Q-radial function neural networks (MFQRFNN). plan entirely web-oriented enable better control effective monitoring consumption. makes use communication system that collects data form irregularly spaced time series. Experimental has been salinity terms accuracy, precision, recall, specificity, computational cost, kappa coefficient.
Язык: Английский
Процитировано
33Journal of Thermal Analysis and Calorimetry, Год журнала: 2023, Номер 148(16), С. 8403 - 8442
Опубликована: Май 2, 2023
Язык: Английский
Процитировано
33