Sensorless temperature estimation of lithium-ion batteries by integrating physics with the state-dependent model DOI

Laien Chen,

Xiaoyong Zeng, Xiangyang Xia

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 124, С. 116809 - 116809

Опубликована: Май 3, 2025

Язык: Английский

Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems DOI
Jiachi Yao, Zhonghao Chang, Te Han

и другие.

Energy, Год журнала: 2024, Номер 294, С. 130882 - 130882

Опубликована: Март 2, 2024

Язык: Английский

Процитировано

32

Communications and Data Science for the Success of Vehicle-to-Grid Technologies: Current State and Future Trends DOI Open Access
Noelia Uribe-Pérez, Amaia González‐Garrido, Alexander Gallarreta

и другие.

Electronics, Год журнала: 2024, Номер 13(10), С. 1940 - 1940

Опубликована: Май 15, 2024

Vehicle-to-grid (V2G) technology has emerged as a promising solution for enhancing the integration of electric vehicles (EVs) into grid, offering benefits, such distributed energy resource (DER) integration, grid stability support, and peak demand management, among others, well environmental advantages. This study provides comprehensive review V2G systems, with specific focus on role communication, they have been identified key enablers, challenges that must face. It begins by introducing fundamentals including their architecture, operation, description benefits different sectors. then delves communication technologies protocols in highlighting requirements achieving reliable efficient between EVs agents involved. A standards is described, main technologies, which are evaluated terms suitability applications. Furthermore, discusses implications technology, emphasizing importance addressing strong communications to maximize its potential benefits. Finally, future research directions solutions overcoming systems outlined, useful insights researchers, policymakers, administrations related industry stakeholders.

Язык: Английский

Процитировано

13

Critical comparison of equivalent circuit and physics-based models for lithium-ion batteries: A graphite/lithium-iron-phosphate case study DOI Creative Commons
Marco Lagnoni, Claudio Scarpelli, Giovanni Lutzemberger

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 94, С. 112326 - 112326

Опубликована: Июнь 13, 2024

Язык: Английский

Процитировано

11

Advancements in parameter estimation techniques for 1RC and 2RC equivalent circuit models of lithium-ion batteries: A comprehensive review DOI Creative Commons
Mohamed A. A. Mohamed,

Tung Fai Yu,

Grace Ramsden

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 113, С. 115581 - 115581

Опубликована: Фев. 6, 2025

Язык: Английский

Процитировано

2

A comparative study of parameter identification methods for equivalent circuit models for lithium-ion batteries and their application to state of health estimation DOI Creative Commons
Jinghua Sun, Yixin Liu, J. Kainz

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 114, С. 115707 - 115707

Опубликована: Фев. 13, 2025

Язык: Английский

Процитировано

1

Improved volumetric noise-adaptive H-infinity filtering for accurate state of power estimation of lithium-ion batteries with multi-parameter constraint considering low-temperature influence DOI
Shunli Wang, Bohan Hu, Lei Zhou

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 115, С. 115999 - 115999

Опубликована: Фев. 27, 2025

Язык: Английский

Процитировано

1

State of Health Estimation for Lithium-Ion Batteries Using Electrochemical Impedance Spectroscopy and a Multi-Scale Kernel Extreme Learning Machine DOI Creative Commons
Jichang Peng,

Ya Gao,

Lei Cai

и другие.

World Electric Vehicle Journal, Год журнала: 2025, Номер 16(4), С. 224 - 224

Опубликована: Апрель 9, 2025

An accurate state of health (SOH) estimation for lithium-ion batteries (LIBs) is crucial reliable operations and extending service life. While electrochemical impedance spectroscopy (EIS) effectively characterizes LIBs degradation patterns, the high dimensionality EIS data poses challenges an efficient analysis. This study proposes a novel method that combines with equivalent circuit model (ECM) distribution relaxation time (DRT) analysis to extract low-dimensional features from high-dimensional data. A multi-scale kernel extreme learning machine (MS-KELM), optimized by Sparrow Search Algorithm (SSA), estimates battery SOH average mean absolute error (MAE) 1.37% root square (RMSE) 1.76%. In addition, compared support vector regression (SVR) Gaussian process (GPR), proposed reduces computational factors 4 30 lowers memory usage approximately 18%.

Язык: Английский

Процитировано

1

A temporal convolution and gated recurrent unit network with attention for state of charge estimation of lithium-ion batteries DOI
Kuo Yang, Yanyu Wang, Yugui Tang

и другие.

Journal of Energy Storage, Год журнала: 2023, Номер 72, С. 108774 - 108774

Опубликована: Авг. 28, 2023

Язык: Английский

Процитировано

19

Dynamic internal resistance modeling and thermal characteristics of lithium-ion batteries for electric vehicles by considering state of health DOI

Yongkuan Sun,

Feifei Liu,

Wu Qin

и другие.

Journal of Power Sources, Год журнала: 2024, Номер 612, С. 234806 - 234806

Опубликована: Июнь 3, 2024

Язык: Английский

Процитировано

7

A Review on Lithium-Ion Battery Modeling from Mechanism-Based and Data-Driven Perspectives DOI Open Access
C. Ji,

Jindong Dai,

Chi Zhai

и другие.

Processes, Год журнала: 2024, Номер 12(9), С. 1871 - 1871

Опубликована: Сен. 1, 2024

As the low-carbon economy continues to advance, New Energy Vehicles (NEVs) have risen prominence in automotive industry. The design and utilization of lithium-ion batteries (LIBs), which are core component NEVs, directly related safety range performance electric vehicles. requirements for a refined battery electrode structures intelligent adjustment charging modes attracted extensive research from both academia LIB models can be divided into mechanism-based data-driven models; however, distinctions connections between these two kinds not been systematically reviewed as yet. Therefore, this work provides an overview perspectives on modeling perspectives. Meanwhile, potential fusion frameworks including mechanism information method also summarized. An introduction technologies is presented, along with current challenges opportunities. From perspective structure design, we further explore how morphology aging-related side reactions impact performance. Furthermore, within realm operation, that leverage machine learning techniques estimate health status investigated. bottlenecks state estimation, operational optimization LIBs prospects mechanism-data hybrid highlighted at end. This expected assist researchers engineers uncovering value operation data, thereby facilitating transformation industry towards energy conservation efficiency enhancement.

Язык: Английский

Процитировано

7