Journal of Energy Storage, Год журнала: 2025, Номер 124, С. 116809 - 116809
Опубликована: Май 3, 2025
Язык: Английский
Journal of Energy Storage, Год журнала: 2025, Номер 124, С. 116809 - 116809
Опубликована: Май 3, 2025
Язык: Английский
Energy, Год журнала: 2024, Номер 294, С. 130882 - 130882
Опубликована: Март 2, 2024
Язык: Английский
Процитировано
32Electronics, Год журнала: 2024, Номер 13(10), С. 1940 - 1940
Опубликована: Май 15, 2024
Vehicle-to-grid (V2G) technology has emerged as a promising solution for enhancing the integration of electric vehicles (EVs) into grid, offering benefits, such distributed energy resource (DER) integration, grid stability support, and peak demand management, among others, well environmental advantages. This study provides comprehensive review V2G systems, with specific focus on role communication, they have been identified key enablers, challenges that must face. It begins by introducing fundamentals including their architecture, operation, description benefits different sectors. then delves communication technologies protocols in highlighting requirements achieving reliable efficient between EVs agents involved. A standards is described, main technologies, which are evaluated terms suitability applications. Furthermore, discusses implications technology, emphasizing importance addressing strong communications to maximize its potential benefits. Finally, future research directions solutions overcoming systems outlined, useful insights researchers, policymakers, administrations related industry stakeholders.
Язык: Английский
Процитировано
13Journal of Energy Storage, Год журнала: 2024, Номер 94, С. 112326 - 112326
Опубликована: Июнь 13, 2024
Язык: Английский
Процитировано
11Journal of Energy Storage, Год журнала: 2025, Номер 113, С. 115581 - 115581
Опубликована: Фев. 6, 2025
Язык: Английский
Процитировано
2Journal of Energy Storage, Год журнала: 2025, Номер 114, С. 115707 - 115707
Опубликована: Фев. 13, 2025
Язык: Английский
Процитировано
1Journal of Energy Storage, Год журнала: 2025, Номер 115, С. 115999 - 115999
Опубликована: Фев. 27, 2025
Язык: Английский
Процитировано
1World Electric Vehicle Journal, Год журнала: 2025, Номер 16(4), С. 224 - 224
Опубликована: Апрель 9, 2025
An accurate state of health (SOH) estimation for lithium-ion batteries (LIBs) is crucial reliable operations and extending service life. While electrochemical impedance spectroscopy (EIS) effectively characterizes LIBs degradation patterns, the high dimensionality EIS data poses challenges an efficient analysis. This study proposes a novel method that combines with equivalent circuit model (ECM) distribution relaxation time (DRT) analysis to extract low-dimensional features from high-dimensional data. A multi-scale kernel extreme learning machine (MS-KELM), optimized by Sparrow Search Algorithm (SSA), estimates battery SOH average mean absolute error (MAE) 1.37% root square (RMSE) 1.76%. In addition, compared support vector regression (SVR) Gaussian process (GPR), proposed reduces computational factors 4 30 lowers memory usage approximately 18%.
Язык: Английский
Процитировано
1Journal of Energy Storage, Год журнала: 2023, Номер 72, С. 108774 - 108774
Опубликована: Авг. 28, 2023
Язык: Английский
Процитировано
19Journal of Power Sources, Год журнала: 2024, Номер 612, С. 234806 - 234806
Опубликована: Июнь 3, 2024
Язык: Английский
Процитировано
7Processes, Год журнала: 2024, Номер 12(9), С. 1871 - 1871
Опубликована: Сен. 1, 2024
As the low-carbon economy continues to advance, New Energy Vehicles (NEVs) have risen prominence in automotive industry. The design and utilization of lithium-ion batteries (LIBs), which are core component NEVs, directly related safety range performance electric vehicles. requirements for a refined battery electrode structures intelligent adjustment charging modes attracted extensive research from both academia LIB models can be divided into mechanism-based data-driven models; however, distinctions connections between these two kinds not been systematically reviewed as yet. Therefore, this work provides an overview perspectives on modeling perspectives. Meanwhile, potential fusion frameworks including mechanism information method also summarized. An introduction technologies is presented, along with current challenges opportunities. From perspective structure design, we further explore how morphology aging-related side reactions impact performance. Furthermore, within realm operation, that leverage machine learning techniques estimate health status investigated. bottlenecks state estimation, operational optimization LIBs prospects mechanism-data hybrid highlighted at end. This expected assist researchers engineers uncovering value operation data, thereby facilitating transformation industry towards energy conservation efficiency enhancement.
Язык: Английский
Процитировано
7