A Hardware Realization Framework for Fuzzy Inference System Optimization DOI Open Access
Saeid Gorgin, Mohammad Sina Karvandi, Somaye Moghari

и другие.

Опубликована: Дек. 20, 2023

The effectiveness of Fuzzy Inference Systems (FISs) in manipulating uncertainty and nonlinearity makes them a subject significant interest for decision-making embedded systems. Accordingly, optimizing FIS hardware improves its performance, efficiency, capabilities, leading to better user experience, increased productivity, cost savings. To be compatible with the limited power budget most systems, this paper presents framework realize ultra-low hardware. It supports optimizations both conventional arithmetic as well MSDF-computing highly consistent MSDF-based sensors. In all processes fuzzification, inference, defuzzification are done on serially coming data bits. demonstrate efficiency proposed framework, we utilized Matlab, Chisel3, Vivado implement it from high-level descriptions synthesis. We also developed Scala library Chisel3 establish connection between these tools, bridging gap, facilitating design space exploration at level. Furthermore, realized an navigation autonomous mobile robots unknown environments. Synthesis results show superiority output our suggested terms resource usage energy consumption compared Matlab HDL code generator output.

Язык: Английский

Deep learning for time series forecasting: a survey DOI Creative Commons
Xiangjie Kong, Zhenghao Chen,

Weiyao Liu

и другие.

International Journal of Machine Learning and Cybernetics, Год журнала: 2025, Номер unknown

Опубликована: Фев. 8, 2025

Язык: Английский

Процитировано

3

Combination prediction of underground mine rock drilling time based on seasonal and trend decomposition using Loess DOI
LI Nin, Ding Liu, Liguan Wang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108064 - 108064

Опубликована: Фев. 10, 2024

Язык: Английский

Процитировано

4

Subtractive Clustering-Based Deep Fuzzy System for Time Series Forecasting via Encoding the Long-Term Trend Feature DOI
Yunxia Liu,

Songping Meng,

Changgeng Zhou

и другие.

International Journal of Fuzzy Systems, Год журнала: 2025, Номер unknown

Опубликована: Янв. 7, 2025

Язык: Английский

Процитировано

0

Fuzzy-Probabilistic Time Series Forecasting Combining Bayesian Network and Fuzzy Time Series Model DOI Open Access
Bo Wang, Xiaodong Liu

Symmetry, Год журнала: 2025, Номер 17(2), С. 275 - 275

Опубликована: Фев. 11, 2025

Despite many fuzzy time series forecasting (FTSF) models addressing complex temporal patterns and uncertainties in data, two limitations persist: they do not treat crisp as a unified whole for analyzing nonlinear relationships between different moments, fail to effectively capture how uncertainty affects predictions. In this paper, we propose an FTSF model integrating Bayesian networks overcome the limitations. network (BN) structure learning is employed extract fuzzy–crisp dependencies historical fuzzified data predicted alongside within data. Integrating logical relationship groups (FLRGs) BNs representing identifies efficiently. BN parameter occurrence of through conditional probability distributions BNs, while empirical probabilities quantify elements FLRGs. The defuzzification stage infers value using fuzzy-empirical-probability weighted FLRGs BN. We validate performance proposed on sixteen diverse series. Experimental results demonstrate competitive compared state-of-the-art methods.

Язык: Английский

Процитировано

0

A new intuitionistic fuzzy time series method based on the bagging of decision trees and principal component analysis DOI
Erdinç Yücesoy, Erol Eğrioğlu, Eren Baş

и другие.

Granular Computing, Год журнала: 2023, Номер 8(6), С. 1925 - 1935

Опубликована: Авг. 30, 2023

Язык: Английский

Процитировано

10

Bayesian network based probabilistic weighted high-order fuzzy time series forecasting DOI Open Access
Bo Wang, Xiaodong Liu, Ming Chi

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 237, С. 121430 - 121430

Опубликована: Сен. 17, 2023

Язык: Английский

Процитировано

10

Financial Time Series Forecasting: A Comprehensive Review of Signal Processing and Optimization-Driven Intelligent Models DOI

Matoori Praveen,

Satish Dekka,

Sai Dai

и другие.

Computational Economics, Год журнала: 2025, Номер unknown

Опубликована: Март 5, 2025

Язык: Английский

Процитировано

0

GWO-FNN: Fuzzy Neural Network Optimized via Grey Wolf Optimization DOI Creative Commons
Paulo Vitor de Campos Souza,

Iman Sayyadzadeh

Mathematics, Год журнала: 2025, Номер 13(7), С. 1156 - 1156

Опубликована: Март 31, 2025

This study introduces the GWO-FNN model, an improvement of fuzzy neural network (FNN) architecture that aims to balance high performance with improved interpretability in artificial intelligence (AI) systems. The model leverages Grey Wolf Optimizer (GWO) fine-tune consequents rules and uses mutual information (MI) initialize weights input layer, resulting greater classification accuracy transparency. A distinctive aspect is its capacity transform logical neurons hidden layer into comprehensible rules, thereby elucidating reasoning behind outputs. model’s were rigorously evaluated through statistical methods, benchmarks, real-world dataset testing. These evaluations demonstrate strong capability extract clearly express intricate patterns within data. By combining advanced rule mechanisms a comprehensive framework, contributes meaningful advancement interpretable AI approaches.

Язык: Английский

Процитировано

0

General strict interval-valued overlap functions, strict interval-valued overlap indices, and their applications in interval type-2 fuzzy systems DOI

Xiaoyu Peng,

Xiaodong Pan, Yexing Dan

и другие.

Information Sciences, Год журнала: 2025, Номер unknown, С. 122274 - 122274

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Robust intuitionistic fuzzy regression functions approaches DOI
Erol Eğrioğlu, Eren Baş

Information Sciences, Год журнала: 2023, Номер 638, С. 118992 - 118992

Опубликована: Апрель 22, 2023

Язык: Английский

Процитировано

9