Distributed heterogeneous flexible job-shop scheduling problem considering automated guided vehicle transportation via improved deep Q network DOI
Minghai Yuan, S. Lu, Liang Zheng

и другие.

Swarm and Evolutionary Computation, Год журнала: 2025, Номер unknown, С. 101902 - 101902

Опубликована: Март 1, 2025

Язык: Английский

An effective memetic algorithm for distributed flexible job shop scheduling problem considering integrated sequencing flexibility DOI
Jiuqiang Tang, Guiliang Gong, Ningtao Peng

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 242, С. 122734 - 122734

Опубликована: Ноя. 30, 2023

Язык: Английский

Процитировано

18

Shared manufacturing-based distributed flexible job shop scheduling with supply-demand matching DOI

Guangyan Wei,

Chunming Ye,

Jianning Xu

и другие.

Computers & Industrial Engineering, Год журнала: 2024, Номер 189, С. 109950 - 109950

Опубликована: Фев. 5, 2024

Язык: Английский

Процитировано

7

A double-Q network collaborative multi-objective optimization algorithm for precast scheduling with curing constraints DOI
Junqing Li, Jiake Li, Kaizhou Gao

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 89, С. 101619 - 101619

Опубликована: Июнь 21, 2024

Язык: Английский

Процитировано

6

An ensemble of brain storm optimization and Q-learning methods for distributed flexible job shop scheduling problems with distribution operations DOI

Zhengpei Zhang,

Yunqiang Yin, Yaping Fu

и другие.

International Journal of General Systems, Год журнала: 2024, Номер 53(7-8), С. 863 - 897

Опубликована: Март 15, 2024

Distributed manufacturing scheduling problems have attracted much concern from both industrial and academic areas. Nevertheless, distributed with distribution operations are seldom studied. This work proposes a flexible job shop problem operations. A set of jobs is handled at shops, then the finished transported to their corresponding customers following given due dates. First, mixed integer programming model established minimize total tardiness. Second, an ensemble brain storm optimization Q-learning methods developed solve formulated model. Six heuristics hybridized generate high-quality initial population. method devised by fully employing found search information guide subsequent processes instead using fixed parameters as basic optimization. variable neighborhood combining problem-specific knowledge designed further refine best individual. At last, compared three state-of-the-art metaheuristics mathematical solver CPLEX via group instances. The results analysis demonstrate that algorithm more powerful competitiveness in addressing studied problem.

Язык: Английский

Процитировано

4

Multi-objective dynamic distributed flexible job shop scheduling problem considering uncertain processing time DOI
Ningtao Peng, Yu Zheng, Z. J. Xiao

и другие.

Cluster Computing, Год журнала: 2025, Номер 28(3)

Опубликована: Янв. 21, 2025

Язык: Английский

Процитировано

0

Discrete Multi-Objective Grey Wolf Algorithm Applied to Dynamic Distributed Flexible Job Shop Scheduling Problem with Variable Processing Times DOI Creative Commons

J. S. Chen,

Chun Wang, Binzi Xu

и другие.

Applied Sciences, Год журнала: 2025, Номер 15(5), С. 2281 - 2281

Опубликована: Фев. 20, 2025

Uncertainty in processing times is a key issue distributed production; it severely affects scheduling accuracy. In this study, we investigate dynamic flexible job shop problem with variable (DDFJSP-VPT), which the time follows normal distribution. First, mathematical model established by simultaneously considering makespan, tardiness, and total factory load. Second, chance-constrained approach employed to predict uncertain generate robust initial schedule. Then, heuristic method involves left-shift strategy, an insertion-based local adjustment DMOGWO-based global rescheduling strategy developed dynamically adjust plan response context of uncertainty. Moreover, hybrid initialization scheme, discrete crossover, mutation operations are designed high-quality population update wolf pack, enabling GWO effectively solve problem. Based on parameter sensitivity study comparison four algorithms, algorithm’s stability effectiveness both static environments demonstrated. Finally, experimental results show that our can achieve much better performance than other rules-based reactive methods hybrid-shift strategy. The utility prediction also validated.

Язык: Английский

Процитировано

0

Deep reinforcement learning-based memetic algorithm for solving dynamic distributed green flexible job shop scheduling problem with finite transportation resources DOI
Xinxin Zhou, Feimeng Wang, Bin Wu

и другие.

Swarm and Evolutionary Computation, Год журнала: 2025, Номер 94, С. 101885 - 101885

Опубликована: Фев. 21, 2025

Язык: Английский

Процитировано

0

Integrated optimisation of dynamic scheduling and reconfiguration for distributed reconfigurable flowshops via iterated greedy algorithm DOI
Shengluo Yang, Junyi Wang, Weidong Li

и другие.

International Journal of Systems Science Operations & Logistics, Год журнала: 2025, Номер 12(1)

Опубликована: Фев. 22, 2025

Язык: Английский

Процитировано

0

A Q-learning improved differential evolution algorithm for human-centric dynamic distributed flexible job shop scheduling problem DOI
Xixing Li, Ao Guo, Xiyan Yin

и другие.

Journal of Manufacturing Systems, Год журнала: 2025, Номер 80, С. 794 - 823

Опубликована: Апрель 24, 2025

Язык: Английский

Процитировано

0

Learning-driven memetic algorithm for solving integrated distributed production and transportation scheduling problem DOI
Shicun Zhao, Hong Zhou

Swarm and Evolutionary Computation, Год журнала: 2025, Номер 96, С. 101945 - 101945

Опубликована: Май 4, 2025

Язык: Английский

Процитировано

0