Swarm and Evolutionary Computation, Год журнала: 2025, Номер unknown, С. 101902 - 101902
Опубликована: Март 1, 2025
Язык: Английский
Swarm and Evolutionary Computation, Год журнала: 2025, Номер unknown, С. 101902 - 101902
Опубликована: Март 1, 2025
Язык: Английский
Expert Systems with Applications, Год журнала: 2023, Номер 242, С. 122734 - 122734
Опубликована: Ноя. 30, 2023
Язык: Английский
Процитировано
18Computers & Industrial Engineering, Год журнала: 2024, Номер 189, С. 109950 - 109950
Опубликована: Фев. 5, 2024
Язык: Английский
Процитировано
7Swarm and Evolutionary Computation, Год журнала: 2024, Номер 89, С. 101619 - 101619
Опубликована: Июнь 21, 2024
Язык: Английский
Процитировано
6International Journal of General Systems, Год журнала: 2024, Номер 53(7-8), С. 863 - 897
Опубликована: Март 15, 2024
Distributed manufacturing scheduling problems have attracted much concern from both industrial and academic areas. Nevertheless, distributed with distribution operations are seldom studied. This work proposes a flexible job shop problem operations. A set of jobs is handled at shops, then the finished transported to their corresponding customers following given due dates. First, mixed integer programming model established minimize total tardiness. Second, an ensemble brain storm optimization Q-learning methods developed solve formulated model. Six heuristics hybridized generate high-quality initial population. method devised by fully employing found search information guide subsequent processes instead using fixed parameters as basic optimization. variable neighborhood combining problem-specific knowledge designed further refine best individual. At last, compared three state-of-the-art metaheuristics mathematical solver CPLEX via group instances. The results analysis demonstrate that algorithm more powerful competitiveness in addressing studied problem.
Язык: Английский
Процитировано
4Cluster Computing, Год журнала: 2025, Номер 28(3)
Опубликована: Янв. 21, 2025
Язык: Английский
Процитировано
0Applied Sciences, Год журнала: 2025, Номер 15(5), С. 2281 - 2281
Опубликована: Фев. 20, 2025
Uncertainty in processing times is a key issue distributed production; it severely affects scheduling accuracy. In this study, we investigate dynamic flexible job shop problem with variable (DDFJSP-VPT), which the time follows normal distribution. First, mathematical model established by simultaneously considering makespan, tardiness, and total factory load. Second, chance-constrained approach employed to predict uncertain generate robust initial schedule. Then, heuristic method involves left-shift strategy, an insertion-based local adjustment DMOGWO-based global rescheduling strategy developed dynamically adjust plan response context of uncertainty. Moreover, hybrid initialization scheme, discrete crossover, mutation operations are designed high-quality population update wolf pack, enabling GWO effectively solve problem. Based on parameter sensitivity study comparison four algorithms, algorithm’s stability effectiveness both static environments demonstrated. Finally, experimental results show that our can achieve much better performance than other rules-based reactive methods hybrid-shift strategy. The utility prediction also validated.
Язык: Английский
Процитировано
0Swarm and Evolutionary Computation, Год журнала: 2025, Номер 94, С. 101885 - 101885
Опубликована: Фев. 21, 2025
Язык: Английский
Процитировано
0International Journal of Systems Science Operations & Logistics, Год журнала: 2025, Номер 12(1)
Опубликована: Фев. 22, 2025
Язык: Английский
Процитировано
0Journal of Manufacturing Systems, Год журнала: 2025, Номер 80, С. 794 - 823
Опубликована: Апрель 24, 2025
Язык: Английский
Процитировано
0Swarm and Evolutionary Computation, Год журнала: 2025, Номер 96, С. 101945 - 101945
Опубликована: Май 4, 2025
Язык: Английский
Процитировано
0