Lecture notes in electrical engineering, Год журнала: 2025, Номер unknown, С. 303 - 313
Опубликована: Янв. 1, 2025
Язык: Английский
Lecture notes in electrical engineering, Год журнала: 2025, Номер unknown, С. 303 - 313
Опубликована: Янв. 1, 2025
Язык: Английский
Advanced Engineering Informatics, Год журнала: 2023, Номер 58, С. 102210 - 102210
Опубликована: Окт. 1, 2023
Язык: Английский
Процитировано
161Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 122200 - 122200
Опубликована: Окт. 23, 2023
Язык: Английский
Процитировано
125Expert Systems with Applications, Год журнала: 2023, Номер 233, С. 120946 - 120946
Опубликована: Июль 6, 2023
Язык: Английский
Процитировано
62Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Янв. 4, 2024
Abstract Given the multi-model and nonlinear characteristics of photovoltaic (PV) models, parameter extraction presents a challenging problem. This challenge is exacerbated by propensity conventional algorithms to get trapped in local optima due complex nature Accurate estimation, nonetheless, crucial its significant impact on PV system’s performance, influencing both current energy production. While traditional methods have provided reasonable results for model variables, they often require extensive computational resources, which impacts precision robustness many fitness evaluations. To address this problem, paper an improved algorithm extraction, leveraging opposition-based exponential distribution optimizer (OBEDO). The OBEDO method, equipped with learning, provides enhanced exploration capability efficient exploitation search space, helping mitigate risk entrapment optima. proposed rigorously verified against state-of-the-art across various including single-diode, double-diode, three-diode, module models. Practical statistical reveal that performs better than other estimating parameters, demonstrating superior convergence speed, reliability, accuracy. Moreover, performance assessed using several case studies, further reinforcing effectiveness. Therefore, OBEDO, advantages terms efficiency robustness, emerges as promising solution identification, making contribution enhancing systems.
Язык: Английский
Процитировано
27Applied Mathematical Modelling, Год журнала: 2024, Номер 130, С. 243 - 271
Опубликована: Март 11, 2024
Язык: Английский
Процитировано
24International Journal of Hydrogen Energy, Год журнала: 2023, Номер 49, С. 238 - 259
Опубликована: Авг. 2, 2023
Язык: Английский
Процитировано
25Expert Systems with Applications, Год журнала: 2024, Номер 248, С. 123481 - 123481
Опубликована: Фев. 12, 2024
Язык: Английский
Процитировано
15Alexandria Engineering Journal, Год журнала: 2024, Номер 91, С. 348 - 367
Опубликована: Фев. 19, 2024
Honey badger algorithm (HBA) is a recent swarm-based metaheuristic that excels in simplicity and high exploitation capability. However, it suffers from some limitations including weak exploration capacity an imbalance between exploitation. In this paper, improved honey called ODEHBA proposed to improve the performance of basic HBA. Firstly, orthogonal opposition-based learning technique employed assist population escaping local optimum. Secondly, differential evolution utilized ensure enrichment diversity enhance convergence speed. Finally, capability boosted by equilibrium pool strategy. To validate efficacy ODEHBA, compared with 13 well-known algorithms on CEC2022 benchmark test sets. Friedman Wilcoxon rank-sum are assess ODEHBA. Furthermore, three engineering design problems Internet Vehicles (IoV) routing problem applied The simulation results demonstrate solving complex numerical problems, design, IoV problems. This holds significant practical implications for cost reduction resource utilization.
Язык: Английский
Процитировано
14IEEE Access, Год журнала: 2024, Номер 12, С. 69240 - 69257
Опубликована: Янв. 1, 2024
In high-dimensional scenarios, path planning is a challenging and computationally complex optimization task that requires finding optimal paths within domains. Metaheuristic (MH) algorithms offer practical approach to addressing this issue. The Dung Beetle Optimizer (DBO), categorized as MH algorithm, takes inspiration from the biological behaviors exhibited by dung beetles. However, DBO exhibits limitations, including inadequate global search capabilities tendency converge on local optima. To address these challenges, paper proposes multi-strategy Improved Optimization algorithm (IDBO) for UAV 3D planning. Initially, cubic chaos mapping applied population initialization, enhancing diversity. Subsequently, novel exploration strategy replaces DBO's original rolling phase, improving information exchange minimizing parameter dependence. Third, an adaptive t-distribution introduced adjust beetle positions, balancing exploitation. Finally, enhanced update proposed, utilizing varied behavioral logic at different stages improve solution quality efficiency. Additionally, performance comparisons with six advanced CEC2017 test suite, validation of IDBO's effectiveness via Wilcoxon rank-sum Friedman mean rank test. Meanwhile, in experiment, IDBO achieves best cost index, which 1.34% higher than DBO, also significantly better most such WOA, GSA, HHO, COA, standard deviation reduced 99.93% compared proves robustness
Язык: Английский
Процитировано
14Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102783 - 102783
Опубликована: Авг. 28, 2024
Процитировано
13