Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112601 - 112601
Опубликована: Дек. 1, 2024
Язык: Английский
Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112601 - 112601
Опубликована: Дек. 1, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2023, Номер 237, С. 121723 - 121723
Опубликована: Сен. 22, 2023
Язык: Английский
Процитировано
58Applied Materials Today, Год журнала: 2024, Номер 39, С. 102306 - 102306
Опубликована: Июнь 29, 2024
Язык: Английский
Процитировано
18Expert Systems with Applications, Год журнала: 2024, Номер 254, С. 124277 - 124277
Опубликована: Май 20, 2024
Язык: Английский
Процитировано
16Results in Engineering, Год журнала: 2025, Номер unknown, С. 104341 - 104341
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Engineering Science and Technology an International Journal, Год журнала: 2025, Номер 64, С. 101950 - 101950
Опубликована: Фев. 18, 2025
Язык: Английский
Процитировано
1Applied Sciences, Год журнала: 2024, Номер 14(6), С. 2418 - 2418
Опубликована: Март 13, 2024
The increasing popularity of unmanned aerial vehicles (UAVs), commonly known as drones, in various fields is primarily due to their agility, quick deployment, flexibility, and excellent mobility. Particularly, the Internet Drones (IoD)—a networked UAV system—has gained broad-spectrum attention for its potential applications. However, threat-prone environments, characterized by obstacles, pose a challenge safety drones. One key challenges IoD formation path planning, which involves determining optimal paths all UAVs while avoiding obstacles other constraints. Limited battery life another that limits operation time UAVs. To address these issues, drones require efficient collision avoidance energy-efficient strategies effective planning. This study focuses on using meta-heuristic algorithms, recognized robust global optimization capabilities, solve path-planning problem. We model problem an aims minimize energy consumption considering threats posed obstacles. Through extensive simulations, this research compares effectiveness particle swarm (PSO), improved PSO (IPSO), comprehensively (CIPSO), artificial bee colony (ABC), genetic algorithm (GA) optimizing IoD’s planning obstacle-dense environments. Different performance metrics have been considered, such optimality, consumption, straight line rate (SLR), relative percentage deviation (RPD). Moreover, nondeterministic test applied, one-way ANOVA obtained validate results different algorithms. Results indicate IPSO’s superior terms stability, convergence speed, length efficiency, albeit with longer run compared ABC.
Язык: Английский
Процитировано
7Biomedical Signal Processing and Control, Год журнала: 2024, Номер 96, С. 106492 - 106492
Опубликована: Июнь 7, 2024
Язык: Английский
Процитировано
6Swarm and Evolutionary Computation, Год журнала: 2024, Номер 90, С. 101686 - 101686
Опубликована: Авг. 9, 2024
Язык: Английский
Процитировано
5Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, Год журнала: 2024, Номер 14(6)
Опубликована: Авг. 18, 2024
Abstract This paper reviews the integration of Q‐learning with meta‐heuristic algorithms (QLMA) over last 20 years, highlighting its success in solving complex optimization problems. We focus on key aspects QLMA, including parameter adaptation, operator selection, and balancing global exploration local exploitation. QLMA has become a leading solution industries like energy, power systems, engineering, addressing range mathematical challenges. Looking forward, we suggest further integration, transfer learning strategies, techniques to reduce state space. article is categorized under: Technologies > Computational Intelligence Artificial
Язык: Английский
Процитировано
5Expert Systems with Applications, Год журнала: 2024, Номер 259, С. 125283 - 125283
Опубликована: Сен. 6, 2024
Язык: Английский
Процитировано
4