Evolutionary Intelligence, Год журнала: 2025, Номер 18(3)
Опубликована: Апрель 6, 2025
Язык: Английский
Evolutionary Intelligence, Год журнала: 2025, Номер 18(3)
Опубликована: Апрель 6, 2025
Язык: Английский
Computers in Biology and Medicine, Год журнала: 2024, Номер 179, С. 108803 - 108803
Опубликована: Июль 1, 2024
Язык: Английский
Процитировано
51Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113062 - 113062
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
4Expert Systems with Applications, Год журнала: 2024, Номер 256, С. 124882 - 124882
Опубликована: Июль 29, 2024
Язык: Английский
Процитировано
18Knowledge-Based Systems, Год журнала: 2024, Номер 295, С. 111725 - 111725
Опубликована: Апрель 16, 2024
Язык: Английский
Процитировано
17Neural Computing and Applications, Год журнала: 2024, Номер 36(33), С. 20723 - 20750
Опубликована: Авг. 16, 2024
Abstract Accurately predicting crop yield is essential for optimizing agricultural practices and ensuring food security. However, existing approaches often struggle to capture the complex interactions between various environmental factors growth, leading suboptimal predictions. Consequently, identifying most important feature vital when leveraging Support Vector Regressor (SVR) prediction. In addition, manual tuning of SVR hyperparameters may not always offer high accuracy. this paper, we introduce a novel framework yields that address these challenges. Our integrates new hybrid selection approach with an optimized model enhance prediction accuracy efficiently. The proposed comprises three phases: preprocessing, selection, phases. preprocessing phase, data normalization conducted, followed by application K-means clustering in conjunction correlation-based filter (CFS) generate reduced dataset. Subsequently, FMIG-RFE proposed. Finally, phase introduces improved variant Crayfish Optimization Algorithm (COA), named ICOA, which utilized optimize thereby achieving superior along approach. Several experiments are conducted assess evaluate performance framework. results demonstrated over state-of-art approaches. Furthermore, experimental findings regarding ICOA optimization algorithm affirm its efficacy model, enhancing both computational efficiency, surpassing algorithms.
Язык: Английский
Процитировано
16Biomimetics, Год журнала: 2024, Номер 9(5), С. 270 - 270
Опубликована: Апрель 28, 2024
The traditional golden jackal optimization algorithm (GJO) has slow convergence speed, insufficient accuracy, and weakened ability in the process of finding optimal solution. At same time, it is easy to fall into local extremes other limitations. In this paper, a novel (SCMGJO) combining sine–cosine Cauchy mutation proposed. On one hand, tent mapping reverse learning introduced population initialization, sine cosine strategies are update prey positions, which enhances global exploration algorithm. introduction for perturbation solution effectively improves algorithm’s obtain Through experiment 23 benchmark test functions, results show that SCMGJO performs well speed accuracy. addition, stretching/compression spring design problem, three-bar truss unmanned aerial vehicle path planning problem verification. experimental prove superior performance compared with intelligent algorithms verify its application engineering applications.
Язык: Английский
Процитировано
15Knowledge-Based Systems, Год журнала: 2024, Номер 302, С. 112347 - 112347
Опубликована: Авг. 5, 2024
Язык: Английский
Процитировано
14Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112895 - 112895
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
2Biomimetics, Год журнала: 2025, Номер 10(1), С. 53 - 53
Опубликована: Янв. 14, 2025
Optimization algorithms play a crucial role in solving complex problems across various fields, including global optimization and feature selection (FS). This paper presents the enhanced polar lights with cryptobiosis differential evolution (CPLODE), novel improvement upon original (PLO) algorithm. CPLODE integrates mechanism (DE) operators to enhance PLO's search capabilities. The particle collision strategy is replaced DE's mutation crossover operators, enabling more effective exploration using dynamic rate improve convergence. Furthermore, records reuses historically successful solutions, thereby improving greedy process. experimental results on 29 CEC 2017 benchmark functions demonstrate CPLODE's superior performance compared eight classical algorithms, higher average ranks faster Moreover, achieved competitive ten real-world datasets, outperforming several well-known binary metaheuristic classification accuracy reduction. These highlight effectiveness for both selection.
Язык: Английский
Процитировано
1SN Computer Science, Год журнала: 2025, Номер 6(2)
Опубликована: Янв. 29, 2025
Язык: Английский
Процитировано
1