
Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 427, С. 117060 - 117060
Опубликована: Май 24, 2024
Язык: Английский
Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 427, С. 117060 - 117060
Опубликована: Май 24, 2024
Язык: Английский
Computer Methods in Applied Mechanics and Engineering, Год журнала: 2022, Номер 401, С. 115616 - 115616
Опубликована: Сен. 20, 2022
Язык: Английский
Процитировано
114Journal of the Mechanics and Physics of Solids, Год журнала: 2022, Номер 172, С. 105177 - 105177
Опубликована: Дек. 15, 2022
Язык: Английский
Процитировано
75Computer Methods in Applied Mechanics and Engineering, Год журнала: 2023, Номер 415, С. 116277 - 116277
Опубликована: Июль 28, 2023
Язык: Английский
Процитировано
51Journal of Computing and Information Science in Engineering, Год журнала: 2024, Номер 24(4)
Опубликована: Янв. 8, 2024
Abstract Advancements in computing power have recently made it possible to utilize machine learning and deep push scientific forward a range of disciplines, such as fluid mechanics, solid materials science, etc. The incorporation neural networks is particularly crucial this hybridization process. Due their intrinsic architecture, conventional cannot be successfully trained scoped when data are sparse, which the case many engineering domains. Nonetheless, provide foundation respect physics-driven or knowledge-based constraints during training. Generally speaking, there three distinct network frameworks enforce underlying physics: (i) physics-guided (PgNNs), (ii) physics-informed (PiNNs), (iii) physics-encoded (PeNNs). These methods advantages for accelerating numerical modeling complex multiscale multiphysics phenomena. In addition, recent developments operators (NOs) add another dimension these new simulation paradigms, especially real-time prediction systems required. All models also come with own unique drawbacks limitations that call further fundamental research. This study aims present review four (i.e., PgNNs, PiNNs, PeNNs, NOs) used state-of-the-art architectures applications reviewed, discussed, future research opportunities presented terms improving algorithms, considering causalities, expanding applications, coupling solvers.
Язык: Английский
Процитировано
51International Journal of Plasticity, Год журнала: 2023, Номер 162, С. 103531 - 103531
Опубликована: Янв. 20, 2023
Язык: Английский
Процитировано
49Thin-Walled Structures, Год журнала: 2024, Номер 205, С. 112495 - 112495
Опубликована: Сен. 24, 2024
Язык: Английский
Процитировано
47Archives of Computational Methods in Engineering, Год журнала: 2024, Номер 31(5), С. 2945 - 2984
Опубликована: Март 1, 2024
Язык: Английский
Процитировано
34Archives of Computational Methods in Engineering, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 3, 2024
Язык: Английский
Процитировано
31Computers & Structures, Год журнала: 2024, Номер 297, С. 107342 - 107342
Опубликована: Апрель 4, 2024
This paper presents a literature review on methods for enabling real-time analysis in digital twins, which are virtual models of physical systems. The advantages twins numerous, including cost reduction, risk mitigation, efficiency enhancement, and decision-making support. However, their implementation faces challenges such as the need data analysis, resource limitations, uncertainty. focuses reducing computational demands, have not been systematically discussed literature. reviews categorizes tools accelerating modeling phenomena needs twins.
Язык: Английский
Процитировано
23Multiscale Science and Engineering, Год журнала: 2024, Номер 6(1), С. 1 - 11
Опубликована: Фев. 13, 2024
Язык: Английский
Процитировано
21