Hyperspectral imaging combined with deep learning models for the prediction of geographical origin and fungal contamination in millet DOI Creative Commons

Saimei Nie,

W. K. Gao, Shasha Liu

и другие.

Frontiers in Sustainable Food Systems, Год журнала: 2024, Номер 8

Опубликована: Сен. 12, 2024

Millet is one of the major coarse grain crops in China. Its geographical origin and Fusarium fungal contamination with ergosterol deoxynivalenol have a direct impact on food quality, so rapid prediction origins toxin essential for protecting market fairness consumer rights. In this study, 600 millet samples were collected from twelve production areas China, traditional algorithms such as random forest (RF) support vector machine (SVM) selected to compare deep learning models content. This paper firstly develops model (wavelet transformation-attention mechanism long short-term memory, WT-ALSTM) by combining hyperspectral imaging achieve best effect, wavelet transformation algorithm effectively eliminates noise spectral data, while attention module improves interpretability selecting feature bands. The integrated (WT-ALSTM) based bands achieves optimal origin, its accuracy exceeding 99% both training datasets. Meanwhile, it content, coefficient determination values 0.95 residual predictive deviation reaching 3.58 3.38 respectively, demonstrating excellent performance. above results suggest that combination has great potential quality assessment millet. study provides new technical references developing portable inspection technology on-site agricultural product future.

Язык: Английский

Identification of green pepper (Zanthoxylum armatum) impurities based on visual attention mechanism fused algorithm DOI
Jian Zhang, Jiajia Tan, Chen Ma

и другие.

Journal of Food Composition and Analysis, Год журнала: 2025, Номер unknown, С. 107445 - 107445

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Refinement of Machine learning models for hyperspectral imaging data in Gastrodia elata analysis DOI Creative Commons
Wei Zhang, Shuang Hu, Qi Zhang

и другие.

Microchemical Journal, Год журнала: 2025, Номер unknown, С. 112726 - 112726

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Quality Detection of Common Beans Flour Using Hyperspectral Imaging Technology: Potential of Machine Learning and Deep Learning DOI
Mahdi Rashvand, Giuliana Paterna, Sabina Laveglia

и другие.

Journal of Food Composition and Analysis, Год журнала: 2025, Номер unknown, С. 107424 - 107424

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Simultaneous determination of pigments of spinach (Spinacia oleracea L.) leaf for quality inspection using hyperspectral imaging and multi-task deep learning regression approaches DOI Creative Commons
Mengyu He, Jin Chen, Cheng Li

и другие.

Food Chemistry X, Год журнала: 2024, Номер 22, С. 101481 - 101481

Опубликована: Май 17, 2024

Rapid and accurate determination of pigment content is important for quality inspection spinach leaves during storage. This study aimed to use hyperspectral imaging at two spectral ranges (visible/near-infrared, VNIR: 400-1000 nm; NIR: 900-1700 nm) simultaneously determine the (chlorophyll

Язык: Английский

Процитировано

4

Identification of chrysanthemum variety via hyperspectral imaging and wavelength selection based on multitask particle swarm optimization DOI
Yunpeng Wei, Huiqiang Hu, Huaxing Xu

и другие.

Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, Год журнала: 2024, Номер 322, С. 124812 - 124812

Опубликована: Июль 15, 2024

Язык: Английский

Процитировано

2

Hyperspectral imaging combined with deep learning models for the prediction of geographical origin and fungal contamination in millet DOI Creative Commons

Saimei Nie,

W. K. Gao, Shasha Liu

и другие.

Frontiers in Sustainable Food Systems, Год журнала: 2024, Номер 8

Опубликована: Сен. 12, 2024

Millet is one of the major coarse grain crops in China. Its geographical origin and Fusarium fungal contamination with ergosterol deoxynivalenol have a direct impact on food quality, so rapid prediction origins toxin essential for protecting market fairness consumer rights. In this study, 600 millet samples were collected from twelve production areas China, traditional algorithms such as random forest (RF) support vector machine (SVM) selected to compare deep learning models content. This paper firstly develops model (wavelet transformation-attention mechanism long short-term memory, WT-ALSTM) by combining hyperspectral imaging achieve best effect, wavelet transformation algorithm effectively eliminates noise spectral data, while attention module improves interpretability selecting feature bands. The integrated (WT-ALSTM) based bands achieves optimal origin, its accuracy exceeding 99% both training datasets. Meanwhile, it content, coefficient determination values 0.95 residual predictive deviation reaching 3.58 3.38 respectively, demonstrating excellent performance. above results suggest that combination has great potential quality assessment millet. study provides new technical references developing portable inspection technology on-site agricultural product future.

Язык: Английский

Процитировано

2