Identification of green pepper (Zanthoxylum armatum) impurities based on visual attention mechanism fused algorithm
Journal of Food Composition and Analysis,
Год журнала:
2025,
Номер
unknown, С. 107445 - 107445
Опубликована: Март 1, 2025
Язык: Английский
Refinement of Machine learning models for hyperspectral imaging data in Gastrodia elata analysis
Microchemical Journal,
Год журнала:
2025,
Номер
unknown, С. 112726 - 112726
Опубликована: Янв. 1, 2025
Язык: Английский
Quality Detection of Common Beans Flour Using Hyperspectral Imaging Technology: Potential of Machine Learning and Deep Learning
Journal of Food Composition and Analysis,
Год журнала:
2025,
Номер
unknown, С. 107424 - 107424
Опубликована: Фев. 1, 2025
Язык: Английский
Simultaneous determination of pigments of spinach (Spinacia oleracea L.) leaf for quality inspection using hyperspectral imaging and multi-task deep learning regression approaches
Food Chemistry X,
Год журнала:
2024,
Номер
22, С. 101481 - 101481
Опубликована: Май 17, 2024
Rapid
and
accurate
determination
of
pigment
content
is
important
for
quality
inspection
spinach
leaves
during
storage.
This
study
aimed
to
use
hyperspectral
imaging
at
two
spectral
ranges
(visible/near-infrared,
VNIR:
400-1000
nm;
NIR:
900-1700
nm)
simultaneously
determine
the
(chlorophyll
Язык: Английский
Identification of chrysanthemum variety via hyperspectral imaging and wavelength selection based on multitask particle swarm optimization
Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy,
Год журнала:
2024,
Номер
322, С. 124812 - 124812
Опубликована: Июль 15, 2024
Язык: Английский
Hyperspectral imaging combined with deep learning models for the prediction of geographical origin and fungal contamination in millet
Frontiers in Sustainable Food Systems,
Год журнала:
2024,
Номер
8
Опубликована: Сен. 12, 2024
Millet
is
one
of
the
major
coarse
grain
crops
in
China.
Its
geographical
origin
and
Fusarium
fungal
contamination
with
ergosterol
deoxynivalenol
have
a
direct
impact
on
food
quality,
so
rapid
prediction
origins
toxin
essential
for
protecting
market
fairness
consumer
rights.
In
this
study,
600
millet
samples
were
collected
from
twelve
production
areas
China,
traditional
algorithms
such
as
random
forest
(RF)
support
vector
machine
(SVM)
selected
to
compare
deep
learning
models
content.
This
paper
firstly
develops
model
(wavelet
transformation-attention
mechanism
long
short-term
memory,
WT-ALSTM)
by
combining
hyperspectral
imaging
achieve
best
effect,
wavelet
transformation
algorithm
effectively
eliminates
noise
spectral
data,
while
attention
module
improves
interpretability
selecting
feature
bands.
The
integrated
(WT-ALSTM)
based
bands
achieves
optimal
origin,
its
accuracy
exceeding
99%
both
training
datasets.
Meanwhile,
it
content,
coefficient
determination
values
0.95
residual
predictive
deviation
reaching
3.58
3.38
respectively,
demonstrating
excellent
performance.
above
results
suggest
that
combination
has
great
potential
quality
assessment
millet.
study
provides
new
technical
references
developing
portable
inspection
technology
on-site
agricultural
product
future.
Язык: Английский