Finance research letters, Год журнала: 2023, Номер 58, С. 104573 - 104573
Опубликована: Окт. 10, 2023
Язык: Английский
Finance research letters, Год журнала: 2023, Номер 58, С. 104573 - 104573
Опубликована: Окт. 10, 2023
Язык: Английский
Technological Forecasting and Social Change, Год журнала: 2024, Номер 206, С. 123570 - 123570
Опубликована: Июль 8, 2024
Язык: Английский
Процитировано
34Finance research letters, Год журнала: 2024, Номер 62, С. 105139 - 105139
Опубликована: Фев. 21, 2024
Язык: Английский
Процитировано
20China Economic Review, Год журнала: 2024, Номер 85, С. 102167 - 102167
Опубликована: Апрель 6, 2024
Язык: Английский
Процитировано
20SAGE Open, Год журнала: 2025, Номер 15(1)
Опубликована: Янв. 1, 2025
As an important driving force for economic growth, digital trade provides opportunities urban green development. Using city-level data in China from 2005 to 2020, we take the cross-border e-commerce comprehensive pilot zone (CBEC) as a policy shock construct spatial difference-in-difference (SDID) model, which is adapted quantitatively examine carbon reduction effects and impact mechanisms of CBEC policy. The results confirm that implementation significantly reduces emissions (CE) cities about 4.5%, mainly due resource allocation efficiency promotion, industrial structure upgrading, technology boosting. Meanwhile, there significant spillover effect, resulting 3.9% CE decrease neighboring cities. In addition, has more effect resource-based high-degree information Our provide evidence accelerate development
Язык: Английский
Процитировано
6Heliyon, Год журнала: 2024, Номер 10(7), С. e28572 - e28572
Опубликована: Март 22, 2024
Green product innovation (GPDI) is crucial for addressing ecological issues and essential enterprises' green operations long-term growth. Digitization offers new possibilities enhancing corporate practices. Nevertheless, previous studies have predominantly addressed the association between overall digitalization innovation, research on outcome of specific digital technology categories lacking. Within this framework, study broadens investigation into connection distinct technologies innovation. The period 2013–2022 was selected as sample observation period, with companies listed China's A-share market objects. fixed-effects model applied to investigate impact artificial intelligence (AI) firms' GPDI while exploring interaction effect organizational capital. findings indicate that AI beneficial in businesses. This enhanced by employee board human capital but diminished social These results remained valid after two-stage least squares regression. utilization resource-based view dynamic capacity theory business implementation. Furthermore, it extends resulting provides a enhancement pathway GPDI. has significant theoretical practical implications.
Язык: Английский
Процитировано
12Finance research letters, Год журнала: 2024, Номер 64, С. 105444 - 105444
Опубликована: Апрель 23, 2024
Язык: Английский
Процитировано
12Journal of Cleaner Production, Год журнала: 2025, Номер unknown, С. 144867 - 144867
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Economic Modelling, Год журнала: 2025, Номер unknown, С. 107068 - 107068
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
2Finance research letters, Год журнала: 2023, Номер 60, С. 104890 - 104890
Опубликована: Дек. 20, 2023
Язык: Английский
Процитировано
20Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Март 14, 2024
Abstract With advanced science and digital technology, transformation has become an important way to promote the sustainable development of enterprises. However, existing research only focuses on linear relationship between a single characteristic transformation. In this study, we select data Chinese A-share listed companies from 2010 2020, innovatively use machine learning method explore differences in predictive effects multi-dimensional features enterprises based Technology-Organization-Environment (TOE) theory, thus identifying main drivers affecting fitting models with stronger effect. The study found that: first, by comparing traditional regression models, it is that prediction ability ensemble earning generally higher than tradition measurement method. For sample selected research, XGBoost LightGBM have strong explanatory high accuracy. Second, compared technical driving force environmental force, organizational greater impact. Third, among these characteristics, equity concentration executives’ knowledge level dimension greatest impact Therefore, enterprise managers should always pay attention decision-making role level. This further enriches literature enterprises, expands application economics, provides theoretical basis for enhance
Язык: Английский
Процитировано
9