Optimizing Methane Uptake on N/O Functionalized Graphene via DFT, Machine Learning, and Uniform Manifold Approximation and Projection (UMAP) Techniques DOI
Mohammad Rahimi,

Amir Mehrpanah,

Parastoo Mouchani

и другие.

Industrial & Engineering Chemistry Research, Год журнала: 2024, Номер 63(44), С. 18940 - 18956

Опубликована: Окт. 25, 2024

Carbon materials possess active sites and functionalities on the surface that can attract prominent interest as solid adsorbents for diverse gas adsorption. This study aimed to predict optimized methane uptake, adsorption energy (Ead), adsorbent rediscovery through multitechniques of neural, regression, classifier ML-DFT, Uniform Manifold Approximation Projection (UMAP). Nitrogen oxygen (N/O) graphene, graphene oxide (GO), N-doped GO were applied storage medium. Multi-ML algorithms employed CH4 uptake (i) N/O such pyridinic (N-py), carboxyl (O–II), oxidized (N-x), hydroxyl (O-h), Nitroso (N-ni), Amine (primary, secondary, tertiary). (ii) The surfaces are decorated with heteroatoms construct (GO) GO. DFT calculations by PW91 Dmol3 package. N/O-functionalities in distance ∼2.0 3.1 Å groups obtained Ead approximately −2.0 −4 eV. Further, ML models accomplished forthcoming physisorption using multiadsorptive features an R2 0.99. ML-derived sensitivity analysis approach was specifications deformation energy, functionality type, structure. indicate levels −0.03 0.02 synergetic DFT/ML approaches distinguished modeled rediscovered phases functional structures. UMAP is a new screening play complementary role modeling process.

Язык: Английский

Machine-learning models to predict hydrogen uptake of porous carbon materials from influential variables DOI
Shadfar Davoodi, Hung Vo Thanh, David A. Wood

и другие.

Separation and Purification Technology, Год журнала: 2023, Номер 316, С. 123807 - 123807

Опубликована: Апрель 10, 2023

Язык: Английский

Процитировано

48

Machine learning - based shale wettability prediction: Implications for H2, CH4 and CO2 geo-storage DOI
Bin Pan,

Tianru Song,

Ming Yue

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 56, С. 1384 - 1390

Опубликована: Янв. 4, 2024

Язык: Английский

Процитировано

34

Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges DOI

Zhengyang Du,

Zhenxue Dai, Zhijie Yang

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2024, Номер 196, С. 114366 - 114366

Опубликована: Март 15, 2024

Язык: Английский

Процитировано

24

A critical review of physics-informed machine learning applications in subsurface energy systems DOI
Abdeldjalil Latrach, Mohamed Lamine Malki, Misael M. Morales

и другие.

Geoenergy Science and Engineering, Год журнала: 2024, Номер 239, С. 212938 - 212938

Опубликована: Май 22, 2024

Язык: Английский

Процитировано

21

Prediction of hydrogen−brine interfacial tension at subsurface conditions: Implications for hydrogen geo-storage DOI Creative Commons

Mostafa Hosseini,

Yuri Leonenko

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 58, С. 485 - 494

Опубликована: Янв. 25, 2024

Underground hydrogen storage (UHS) offers a promising approach for the of significant volumes gas (H2) within deep geological formations, which can later be utilized energy generation when necessary. Interfacial tension (IFT) between H2 and formation brine plays vital role in influencing distribution at pore scale and, ultimately, capacity. In this research, we developed four intelligent models: Decision Trees (DT), Random Forests (RF), Support Vector Machines (SVM), Multi-Layer Perceptron (MLP). These models were designed to predict IFT utilizing pressure, temperature, molality. Additionally, fine-tuned three explicit correlations previously our research. To assess influence each parameter on IFT, conducted comprehensive analysis raw data exclude doubtful samples. This was followed by rigorous model development, including hyperparameter tuning, finally, an examination using testing data. The results clearly demonstrate superiority RF model, achieving high accuracy reliability with coefficients determination (R2), root mean square error (RMSE), average absolute relative deviation (AARD) values 0.96, 1.50, 1.84 %, respectively. exemplary performance attributed its inherent characteristics. ensemble excels capturing complex relationships, thereby enhancing predictive solidifying over other study. Furthermore, feature importance revealed that temperature has most influence, molality pressure. Moreover, assessed these through external not used initial training stages. Our study highlights exceptional power emphasizing practical selecting enhanced reliability. proposed method shows potential industrial applications, especially optimizing underground storage.

Язык: Английский

Процитировано

20

Recent progress on advanced solid adsorbents for CO2 capture: From mechanism to machine learning DOI
Mobin Safarzadeh Khosrowshahi, Amirhossein Afshari Aghajari, Mohammad Rahimi

и другие.

Materials Today Sustainability, Год журнала: 2024, Номер 27, С. 100900 - 100900

Опубликована: Июнь 29, 2024

Язык: Английский

Процитировано

20

Estimating the hydrogen adsorption in depleted shale gas reservoirs for kerogens in underground hydrogen storage using machine learning algorithms DOI
Grant Charles Mwakipunda, Mouigni Baraka Nafouanti,

AL-Wesabi Ibrahim

и другие.

Fuel, Год журнала: 2025, Номер 388, С. 134534 - 134534

Опубликована: Фев. 5, 2025

Язык: Английский

Процитировано

5

Data-Driven Prediction of Storage Column Height for H2-Brine Systems: Accelerating Underground Hydrogen Storage DOI

Aneeq Nasir Janjua,

Zeeshan Tariq, Muhammad Ali

и другие.

International Petroleum Technology Conference, Год журнала: 2025, Номер unknown

Опубликована: Фев. 17, 2025

Abstract A practical solution to energy transition and the increasing demand for is underground hydrogen storage (UHS). The contribution of (H2) as a clean source has proven be an effective substitute future use meet net-zero target reduce anthropogenic greenhouse gas emissions. One most important factors affecting H2 displacement capacity under geological circumstances column height. objective this study underscore importance large-scale reliable machine learning algorithms evaluate predict height varied thermophysical salinity conditions. In study, dataset 540 datapoints evaluation prediction generated, which involves three main parameters: density difference (Δρ), interfacial tension (IFT) contact angle (θ). correlation angles against various reservoir depths used evaluated. Thermophysical conditions include pressures (0.1-20 MPa), temperatures (25-70°C), salinities including deionized water, seawater brines 1 3 molar concentrations salts (NaCl, KCl, MgCl2, CaCl2, Na2SO4) from our experimental data. (h) predicted using (ML) models, viz., random forest (RF), decision tree (DT) gradient boosting (GB). Statistical data analysis performed generate distribution coefficient calculated while feature determined identify relationship each input parameter with output Pearson, Spearman, Kendall models. RF GB, demonstrated in have shown promising results providing accurate predictions maintaining generalizability. Various error assessment metrics MSE, RMSE, MAPE R2 are utilized evaluation. Prediction resulted values 0.995 training 0.999 testing model. Whereas GB model also superior performance 0.997 during phase phase. However, DT 0.994 phases respectively. While MSE value 0 obtained indicated overfitting. findings suggest that data-driven ML models can powerful tool accurately predicting effectively determine capacity, reducing time cost associated determination traditional methods. addition, advanced explored overcome challenges pertinent

Язык: Английский

Процитировано

3

Technical challenges and opportunities of hydrogen storage: A comprehensive review on different types of underground storage DOI
Guangyao Leng, Wei Yan, Zhangxin Chen

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 114, С. 115900 - 115900

Опубликована: Фев. 21, 2025

Язык: Английский

Процитировано

3

Improving wettability estimation in carbonate formation using machine learning algorithms: Implications for underground hydrogen storage applications DOI
Grant Charles Mwakipunda,

AL-Wesabi Ibrahim,

Allou Koffi Franck Kouassi

и другие.

International Journal of Hydrogen Energy, Год журнала: 2025, Номер 111, С. 781 - 797

Опубликована: Фев. 27, 2025

Язык: Английский

Процитировано

3