RÜZGÂR GÜCÜ TAHMİNİNDE UZUN KISA-SÜRELİ BELLEK: VERİ ÖRNEKLEME VE KÜMELEMENİN ETKİSİ
Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi,
Год журнала:
2025,
Номер
28(1), С. 202 - 215
Опубликована: Март 3, 2025
Rüzgâr
enerjisi,
temiz,
yenilenebilir
ve
çevre
dostu
olarak
geleneksel
güç
kaynaklarının
en
verimli
alternatiflerinden
biridir.
Bununla
birlikte,
rüzgâr
hızının
dolayısıyla
kalitesinin
değişken
doğasından
dolayı,
elektrik
şebekesinin
güvenliği
güvenilirliğinin
önünde
bazı
engeller
oluşabilmektedir.
hızı
gücü
tahmini
aracılığı
ile
planlaması
sorununu
çözebilmek
için,
popüler
yinelemeli
sinir
ağlarından
(YNSA)
biri
olan
uzun
kısa-süreli
bellek
(UKSB)
tabanlı
bir
tahmin
modeli
önerilmektedir.
Bu
çalışmada
Türkiye’de
mevcut
türbininden
elde
edilen
yayımlanan
veri
seti
kullanılmıştır.
İlk
UKSB
ağı,
zaman-dizilerine
ilişkin
farklı
pencere
boyutundaki
veriler
için
eğitilmiştir.
Daha
sonra
bu
iki
ağının
çıktıları
başka
ağı
girdi
kullanılarak
daha
yüksek
aralıklarla
az
miktarda
sağlam
yaklaşım
sağlanması
hedeflenmiştir.
Nihai
verileri,
her
dizinin
sonuçları
edilir.
30-dakikalık,
1-saatik,
6-saatlik
1-günlük
4
durum
çalışması
yapılarak
önerilen
algoritmanın
etkinliği
gösterilmiştir.
Colonial bacterial memetic algorithm and its application on a darts playing robot
Scientific Reports,
Год журнала:
2025,
Номер
15(1)
Опубликована: Март 28, 2025
In
this
paper,
we
present
the
Colonial
Bacterial
Memetic
Algorithm
(CBMA),
an
advanced
evolutionary
optimization
approach
for
robotic
applications.
CBMA
extends
by
integrating
Cultural
Algorithms
and
co-evolutionary
dynamics
inspired
bacterial
group
behavior.
This
combination
of
natural
artificial
elements
results
in
a
robust
algorithm
capable
handling
complex
challenges
robotics,
such
as
constraints,
multiple
objectives,
large
search
spaces,
models,
while
delivering
fast
accurate
solutions.
incorporates
features
like
multi-level
clustering,
dynamic
gene
selection,
hierarchical
population
adaptive
mechanisms,
enabling
efficient
management
task-specific
parameters
optimizing
solution
quality
minimizing
resource
consumption.
The
algorithm's
effectiveness
is
demonstrated
through
real-world
application,
achieving
100%
success
rate
robot
arm's
ball-throwing
task
usually
with
significantly
fewer
iterations
evaluations
compared
to
other
methods.
was
also
evaluated
using
CEC-2017
benchmark
suite,
where
it
consistently
outperformed
state-of-the-art
algorithms,
superior
outcomes
71%
high-dimensional
cases
demonstrating
up
80%
reduction
required
evaluations.
These
highlight
CBMA's
efficiency,
adaptability,
suitability
specialized
tasks.
Overall,
exhibits
exceptional
performance
both
evaluations,
effectively
balancing
exploration
exploitation,
representing
significant
advancement
robotics.
Язык: Английский
Optimal Power Flow in Hybrid Wind-PV-V2G Systems with Dynamic Load Demand using a Hybrid MRFO-AHA Algorithm
IEEE Access,
Год журнала:
2024,
Номер
12, С. 174297 - 174329
Опубликована: Янв. 1, 2024
Язык: Английский
Leveraging the Performance of Integrated Power Systems with Wind Uncertainty Using Fractional Computing-Based Hybrid Method
Fractal and Fractional,
Год журнала:
2024,
Номер
8(9), С. 532 - 532
Опубликована: Сен. 11, 2024
Reactive
power
dispatch
(RPD)
in
electric
systems,
integrated
with
renewable
energy
sources,
is
gaining
popularity
among
engineers
because
of
its
vital
importance
the
planning,
designing,
and
operation
advanced
systems.
The
goal
RPD
to
upgrade
system
performance
by
minimizing
transmission
line
losses,
enhancing
voltage
profiles,
reducing
total
operating
costs
tuning
decision
variables
such
as
transformer
tap
setting,
generator’s
terminal
voltages,
capacitor
size.
But
complex,
non-linear,
dynamic
characteristics
networks,
well
presence
demand
uncertainties
non-stationary
behavior
wind
generation,
pose
a
challenging
problem
that
cannot
be
solved
efficiently
traditional
numerical
techniques.
In
this
study,
new
fractional
computing
strategy,
namely,
hybrid
particle
swarm
optimization
(FHPSO),
proposed
handle
issues
networks
plants
(WPPs)
while
incorporating
uncertainties.
To
improve
convergence
Particle
Swarm
Optimization
Gravitational
Search
Algorithm
(PSOGSA),
FHPSO
incorporates
concepts
Shannon
entropy
inside
mathematical
model
PSOGSA.
Extensive
experimentation
validates
effectiveness
best
value
objective
functions,
deviation
index
loss
minimization
standard
shows
an
improvement
percentage
61.62%,
85.44%,
86.51%,
93.15%,
84.37%,
67.31%,
61.64%,
61.13%,
8.44%,
1.899%,
respectively,
over
ALC_PSO,
FAHLCPSO,
OGSA,
ABC,
SGA,
CKHA,
NGBWCA,
KHA,
PSOGSA,
FPSOGSA
case
optimal
reactive
dispatch(ORPD)
for
IEEE
30
bus
system.
Furthermore,
stability,
robustness,
precision
designed
are
determined
using
statistical
interpretations
cumulative
distribution
function
graphs,
quantile-quantile
plots,
boxplot
illustrations,
histograms.
Язык: Английский