
IEEE Access, Journal Year: 2024, Volume and Issue: 12, P. 174297 - 174329
Published: Jan. 1, 2024
Language: Английский
IEEE Access, Journal Year: 2024, Volume and Issue: 12, P. 174297 - 174329
Published: Jan. 1, 2024
Language: Английский
Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, Journal Year: 2025, Volume and Issue: 28(1), P. 202 - 215
Published: March 3, 2025
Rüzgâr enerjisi, temiz, yenilenebilir ve çevre dostu olarak geleneksel güç kaynaklarının en verimli alternatiflerinden biridir. Bununla birlikte, rüzgâr hızının dolayısıyla kalitesinin değişken doğasından dolayı, elektrik şebekesinin güvenliği güvenilirliğinin önünde bazı engeller oluşabilmektedir. hızı gücü tahmini aracılığı ile planlaması sorununu çözebilmek için, popüler yinelemeli sinir ağlarından (YNSA) biri olan uzun kısa-süreli bellek (UKSB) tabanlı bir tahmin modeli önerilmektedir. Bu çalışmada Türkiye’de mevcut türbininden elde edilen yayımlanan veri seti kullanılmıştır. İlk UKSB ağı, zaman-dizilerine ilişkin farklı pencere boyutundaki veriler için eğitilmiştir. Daha sonra bu iki ağının çıktıları başka ağı girdi kullanılarak daha yüksek aralıklarla az miktarda sağlam yaklaşım sağlanması hedeflenmiştir. Nihai verileri, her dizinin sonuçları edilir. 30-dakikalık, 1-saatik, 6-saatlik 1-günlük 4 durum çalışması yapılarak önerilen algoritmanın etkinliği gösterilmiştir.
Citations
0Scientific Reports, Journal Year: 2025, Volume and Issue: 15(1)
Published: March 28, 2025
In this paper, we present the Colonial Bacterial Memetic Algorithm (CBMA), an advanced evolutionary optimization approach for robotic applications. CBMA extends by integrating Cultural Algorithms and co-evolutionary dynamics inspired bacterial group behavior. This combination of natural artificial elements results in a robust algorithm capable handling complex challenges robotics, such as constraints, multiple objectives, large search spaces, models, while delivering fast accurate solutions. incorporates features like multi-level clustering, dynamic gene selection, hierarchical population adaptive mechanisms, enabling efficient management task-specific parameters optimizing solution quality minimizing resource consumption. The algorithm's effectiveness is demonstrated through real-world application, achieving 100% success rate robot arm's ball-throwing task usually with significantly fewer iterations evaluations compared to other methods. was also evaluated using CEC-2017 benchmark suite, where it consistently outperformed state-of-the-art algorithms, superior outcomes 71% high-dimensional cases demonstrating up 80% reduction required evaluations. These highlight CBMA's efficiency, adaptability, suitability specialized tasks. Overall, exhibits exceptional performance both evaluations, effectively balancing exploration exploitation, representing significant advancement robotics.
Language: Английский
Citations
0Fractal and Fractional, Journal Year: 2024, Volume and Issue: 8(9), P. 532 - 532
Published: Sept. 11, 2024
Reactive power dispatch (RPD) in electric systems, integrated with renewable energy sources, is gaining popularity among engineers because of its vital importance the planning, designing, and operation advanced systems. The goal RPD to upgrade system performance by minimizing transmission line losses, enhancing voltage profiles, reducing total operating costs tuning decision variables such as transformer tap setting, generator’s terminal voltages, capacitor size. But complex, non-linear, dynamic characteristics networks, well presence demand uncertainties non-stationary behavior wind generation, pose a challenging problem that cannot be solved efficiently traditional numerical techniques. In this study, new fractional computing strategy, namely, hybrid particle swarm optimization (FHPSO), proposed handle issues networks plants (WPPs) while incorporating uncertainties. To improve convergence Particle Swarm Optimization Gravitational Search Algorithm (PSOGSA), FHPSO incorporates concepts Shannon entropy inside mathematical model PSOGSA. Extensive experimentation validates effectiveness best value objective functions, deviation index loss minimization standard shows an improvement percentage 61.62%, 85.44%, 86.51%, 93.15%, 84.37%, 67.31%, 61.64%, 61.13%, 8.44%, 1.899%, respectively, over ALC_PSO, FAHLCPSO, OGSA, ABC, SGA, CKHA, NGBWCA, KHA, PSOGSA, FPSOGSA case optimal reactive dispatch(ORPD) for IEEE 30 bus system. Furthermore, stability, robustness, precision designed are determined using statistical interpretations cumulative distribution function graphs, quantile-quantile plots, boxplot illustrations, histograms.
Language: Английский
Citations
1IEEE Access, Journal Year: 2024, Volume and Issue: 12, P. 174297 - 174329
Published: Jan. 1, 2024
Language: Английский
Citations
1