Опубликована: Янв. 1, 2025
Язык: Английский
Опубликована: Янв. 1, 2025
Язык: Английский
Energy, Год журнала: 2024, Номер 292, С. 130493 - 130493
Опубликована: Янв. 27, 2024
Язык: Английский
Процитировано
56International Journal of Electrical Power & Energy Systems, Год журнала: 2024, Номер 157, С. 109876 - 109876
Опубликована: Фев. 21, 2024
This paper addresses the challenge of predicting dam level rise in hydroelectric power plants during floods and proposes a solution using an automatic hyperparameters tuning temporal fusion transformer (AutoTFT) model. Hydroelectric play critical role long-term energy planning, accurate prediction is crucial for maintaining operational safety optimizing generation. The AutoTFT model applied to analyze time series data representing water storage capacity plant, providing valuable insights decision-making emergency situations. results demonstrate that surpasses other deep learning approaches, achieving high accuracy across different horizons. Having root mean square error (RMSE) 2.78×10−3 short-term forecasting 1.72 considering median-term forecasting, shows be promising presented this paper. had lower RMSE than adaptive neuro-fuzzy inference system, long memory, bootstrap aggregation (bagged), sequential (boosted), stacked generalization ensemble approaches. findings underscore potential improving efficiency, ensuring safety, generation flood events.
Язык: Английский
Процитировано
25Expert Systems with Applications, Год журнала: 2024, Номер 246, С. 123086 - 123086
Опубликована: Янв. 13, 2024
Язык: Английский
Процитировано
18Electrical Engineering, Год журнала: 2023, Номер 105(6), С. 3881 - 3894
Опубликована: Июль 14, 2023
Язык: Английский
Процитировано
29Ain Shams Engineering Journal, Год журнала: 2024, Номер 15(6), С. 102722 - 102722
Опубликована: Март 1, 2024
Ensuring the reliability of electrical distribution networks is a pressing concern, especially given power outages due to surface contamination on insulating components. Surface can elevate conductivity, thereby resulting in failures that lead shutdowns. Addressing this challenge, paper proposes an approach for real-time monitoring grids prevent such incidents. A hypertuned version you only look once (YOLO) model tailored application. We refine model's hyperparameters by integrating genetic algorithm maximize its detection performance. The EigenCAM technique enhances visual interpretability outcomes, providing operators with actionable insights maintenance and tasks. Benchmark tests reveal proposed Hypertuned-YOLO outperforms Detectron (Masked R-CNN), YOLOv5, YOLOv7 models. achieves F1-score 0.867 [email protected] 0.922, validating robustness efficacy.
Язык: Английский
Процитировано
16Expert Systems with Applications, Год журнала: 2024, Номер 252, С. 124154 - 124154
Опубликована: Май 7, 2024
Язык: Английский
Процитировано
13IEEE Access, Год журнала: 2024, Номер 12, С. 30020 - 30029
Опубликована: Янв. 1, 2024
Electricity load forecasting is important to planning the decision-making regarding use of energy resources, in which power system must be operated guarantee supply electricity future at lowest possible price. With rise ability based on deep learning, these approaches are promising this context. Considering attention mechanism capture long-range dependencies, it highly recommended for sequential data processing, where time series-related tasks stand out. a sequence-to-sequence (Seq2Seq) series Brazil, paper proposes long short-term memory (LSTM) with perform forecasting. The proposed Seq2Seq-LSTM outperforms other well-established models. Having mean absolute error equal 0.3027 method shown field applications. contributes by implementing an Seq2Seq data, therefore, more than one correlated signal can used prediction enhancing its capacity when avaliable.
Язык: Английский
Процитировано
10Electric Power Systems Research, Год журнала: 2024, Номер 230, С. 110275 - 110275
Опубликована: Март 1, 2024
Язык: Английский
Процитировано
10Sensors, Год журнала: 2023, Номер 23(13), С. 6118 - 6118
Опубликована: Июль 3, 2023
Disruptive failures threaten the reliability of electric supply in power branches, often indicated by rise leakage current distribution insulators. This paper presents a novel, hybrid method for fault prediction based on time series contaminated In controlled high-voltage laboratory simulation, 15 kV-class insulators from an electrical network were exposed to increasing contamination salt chamber. The was recorded over 28 h effective exposure, culminating flashover all considered event served as mark that this proposes evaluate. proposed applies Christiano-Fitzgerald random walk (CFRW) filter trend decomposition and group data-handling (GMDH) prediction. CFRW filter, with its versatility, proved be more than seasonal using moving averages reducing non-linearities. CFRW-GMDH method, root-mean-squared error 3.44×10-12, outperformed both standard GMDH long short-term memory models superior performance suggested is promising tool predicting faults grid data. approach can provide utilities reliable monitoring insulator health failures, thereby enhancing supply.
Язык: Английский
Процитировано
22Sustainability, Год журнала: 2023, Номер 15(19), С. 14049 - 14049
Опубликована: Сен. 22, 2023
The concept of sustainability, with a focus on energy, has emerged as central tenet in addressing the mounting global challenges environmental degradation and resource depletion. Indicators sustainability focusing energy are crucial tools used to assess monitor progress toward achieving more sustainable system. These indicators provide valuable insights into environmental, social, economic dimensions practices their long-term impacts. By analyzing understanding these indicators, policymakers, businesses, communities can make informed decisions, formulate effective policies, steer efforts future. serve navigational guides, steering world that support both present needs well-being future generations. In this paper, measurement indexes reviewed, factors. discussion presented here is related an assessment possibilities for improving efficiency evaluating measure whether desired levels being achieved.
Язык: Английский
Процитировано
19