Knowledge-Based Systems, Год журнала: 2023, Номер 281, С. 111064 - 111064
Опубликована: Окт. 6, 2023
Язык: Английский
Knowledge-Based Systems, Год журнала: 2023, Номер 281, С. 111064 - 111064
Опубликована: Окт. 6, 2023
Язык: Английский
Information Fusion, Год журнала: 2023, Номер 96, С. 156 - 191
Опубликована: Март 15, 2023
Язык: Английский
Процитировано
349Computers in Biology and Medicine, Год журнала: 2023, Номер 165, С. 107450 - 107450
Опубликована: Сен. 9, 2023
Язык: Английский
Процитировано
76Neurocomputing, Год журнала: 2024, Номер 577, С. 127317 - 127317
Опубликована: Янв. 26, 2024
Язык: Английский
Процитировано
53Journal of Digital Imaging, Год журнала: 2023, Номер 36(3), С. 973 - 987
Опубликована: Фев. 16, 2023
Язык: Английский
Процитировано
48Information Fusion, Год журнала: 2024, Номер 110, С. 102472 - 102472
Опубликована: Май 16, 2024
Язык: Английский
Процитировано
30Computers in Biology and Medicine, Год журнала: 2024, Номер 177, С. 108635 - 108635
Опубликована: Май 22, 2024
Multimodal medical imaging plays a pivotal role in clinical diagnosis and research, as it combines information from various modalities to provide more comprehensive understanding of the underlying pathology. Recently, deep learning-based multimodal fusion techniques have emerged powerful tools for improving image classification. This review offers thorough analysis developments classification tasks. We explore complementary relationships among prevalent outline three main schemes networks: input fusion, intermediate (encompassing single-level hierarchical attention-based fusion), output fusion. By evaluating performance these techniques, we insight into suitability different network architectures scenarios application domains. Furthermore, delve challenges related architecture selection, handling incomplete data management, potential limitations Finally, spotlight promising future Transformer-based give recommendations research this rapidly evolving field.
Язык: Английский
Процитировано
20Archives of Computational Methods in Engineering, Год журнала: 2024, Номер 31(4), С. 2345 - 2384
Опубликована: Янв. 6, 2024
Язык: Английский
Процитировано
18Magnetic Resonance Imaging, Год журнала: 2024, Номер 107, С. 69 - 79
Опубликована: Янв. 17, 2024
Язык: Английский
Процитировано
16Diagnostics, Год журнала: 2025, Номер 15(4), С. 456 - 456
Опубликована: Фев. 13, 2025
Background/Objectives: The following systematic review integrates neuroimaging techniques with deep learning approaches concerning emotion detection. It, therefore, aims to merge cognitive neuroscience insights advanced algorithmic methods in pursuit of an enhanced understanding and applications recognition. Methods: study was conducted PRISMA guidelines, involving a rigorous selection process that resulted the inclusion 64 empirical studies explore modalities such as fMRI, EEG, MEG, discussing their capabilities limitations It further evaluates architectures, including neural networks, CNNs, GANs, terms roles classifying emotions from various domains: human-computer interaction, mental health, marketing, more. Ethical practical challenges implementing these systems are also analyzed. Results: identifies fMRI powerful but resource-intensive modality, while EEG MEG more accessible high temporal resolution limited by spatial accuracy. Deep models, especially CNNs have performed well emotions, though they do not always require large diverse datasets. Combining data behavioral features improves classification performance. However, ethical challenges, privacy bias, remain significant concerns. Conclusions: has emphasized efficiencies detection, technical were highlighted. Future research should integrate advances, establish innovative enhance system reliability applicability.
Язык: Английский
Процитировано
5Information Fusion, Год журнала: 2023, Номер 99, С. 101864 - 101864
Опубликована: Июнь 2, 2023
Язык: Английский
Процитировано
37