Outlier detection using flexible categorization and interrogative agendas DOI Creative Commons

Marcel Boersma,

Krishna Manoorkar, Alessandra Palmigiano

и другие.

Decision Support Systems, Год журнала: 2024, Номер 180, С. 114196 - 114196

Опубликована: Фев. 19, 2024

Categorization is one of the basic tasks in machine learning and data analysis. Building on formal concept analysis (FCA), starting point present work that different ways to categorize a given set objects exist, which depend choice sets features used classify them, such may yield better or worse categorizations, relative task at hand. In their turn, (a priori) particular over another might be subjective express certain epistemic stance (e.g. interests, relevance, preferences) an agent group agents, namely, interrogative agenda. paper, we represent agendas as features, explore compare w.r.t. (agendas). We first develop simple unsupervised FCA-based algorithm for outlier detection uses categorizations arising from agendas. then supervised meta-learning learn suitable (fuzzy) categorization with weights masses. combine this obtain algorithm. show these algorithms perform par commonly datasets detection. These provide both local global explanations results.

Язык: Английский

Anomaly Detection Using Fuzzy Information Entropy for Incomplete Data DOI

Yuhao Tang,

Chang Liu, Zhong Yuan

и другие.

Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 140 - 162

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Granular-ball fuzzy information-based outlier detector DOI
Qilin Li, Zhong Yuan, Dezhong Peng

и другие.

International Journal of Approximate Reasoning, Год журнала: 2025, Номер unknown, С. 109473 - 109473

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Attribute granules-based object entropy for outlier detection in nominal data DOI
Chang Liu, Dezhong Peng,

Hongmei Chen

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108198 - 108198

Опубликована: Март 11, 2024

Язык: Английский

Процитировано

3

Granular-ball computing-based Random Walk for anomaly detection DOI
Sihan Wang, Sihan Wang, Shitong Cheng

и другие.

Pattern Recognition, Год журнала: 2025, Номер unknown, С. 111588 - 111588

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Outlier detection using flexible categorization and interrogative agendas DOI Creative Commons

Marcel Boersma,

Krishna Manoorkar, Alessandra Palmigiano

и другие.

Decision Support Systems, Год журнала: 2024, Номер 180, С. 114196 - 114196

Опубликована: Фев. 19, 2024

Categorization is one of the basic tasks in machine learning and data analysis. Building on formal concept analysis (FCA), starting point present work that different ways to categorize a given set objects exist, which depend choice sets features used classify them, such may yield better or worse categorizations, relative task at hand. In their turn, (a priori) particular over another might be subjective express certain epistemic stance (e.g. interests, relevance, preferences) an agent group agents, namely, interrogative agenda. paper, we represent agendas as features, explore compare w.r.t. (agendas). We first develop simple unsupervised FCA-based algorithm for outlier detection uses categorizations arising from agendas. then supervised meta-learning learn suitable (fuzzy) categorization with weights masses. combine this obtain algorithm. show these algorithms perform par commonly datasets detection. These provide both local global explanations results.

Язык: Английский

Процитировано

2