Online Knowledge Distillation-Based Multiscale Threshold Denoising Networks for Fault Diagnosis of Transmission Systems DOI
Yadong Xu, Xiaoan Yan, Beibei Sun

и другие.

IEEE Transactions on Transportation Electrification, Год журнала: 2023, Номер 10(2), С. 4421 - 4431

Опубликована: Сен. 11, 2023

Convolutional neural networks (CNN) have developed rapidly in recent years, which has greatly promoted the advancement of intelligent fault diagnosis. Most currently available CNN-based diagnostic models are under presumption that acquired mechanical signals invulnerable to noise. However, transmission systems usually operate fluctuating conditions (e.g., variable speed and strong noise scenarios), making fault-related pulse information signal easily swamped by Therefore, it is challenging for these existing approaches achieve satisfactory results industrial scenarios. To deal with this problem, an online knowledge distillation-based multiscale threshold denoising network (OKD-MTDN) research work. The main innovations contributions work include: 1) introducing a novel convolutional module, called Multiscale Module (MCM), alongside Global Attention (GAM), extracting range discriminative features generated from signals; 2) designing multi-dilated module (MTDM) expand receptive field filter out interference features; 3) establishing distillation (OKD) algorithm improve generalization capability OKD-MTDN. hF-MS planetary gearbox dataset real-running high-speed rail utilized verify effectiveness proposed method. Experimental show OKD-MTDN can various nonstationary

Язык: Английский

Multivariate multiscale dispersion Lempel–Ziv complexity for fault diagnosis of machinery with multiple channels DOI
Shun Wang, Yongbo Li, Khandaker Noman

и другие.

Information Fusion, Год журнала: 2023, Номер 104, С. 102152 - 102152

Опубликована: Ноя. 23, 2023

Язык: Английский

Процитировано

26

CDTFAFN: A novel coarse-to-fine dual-scale time-frequency attention fusion network for machinery vibro-acoustic fault diagnosis DOI
Xiaoan Yan, Dong Jiang, Ling Xiang

и другие.

Information Fusion, Год журнала: 2024, Номер 112, С. 102554 - 102554

Опубликована: Июнь 27, 2024

Язык: Английский

Процитировано

16

Physics-inspired multimodal machine learning for adaptive correlation fusion based rotating machinery fault diagnosis DOI
Dingyi Sun, Yongbo Li, Zheng Liu

и другие.

Information Fusion, Год журнала: 2024, Номер 108, С. 102394 - 102394

Опубликована: Март 30, 2024

Язык: Английский

Процитировано

13

Review of research on signal decomposition and fault diagnosis of rolling bearing based on vibration signal DOI
Junning Li, Luo Wen-guang,

Mengsha Bai

и другие.

Measurement Science and Technology, Год журнала: 2024, Номер 35(9), С. 092001 - 092001

Опубликована: Май 22, 2024

Abstract Rolling bearings are critical components that prone to faults in the operation of rotating equipment. Therefore, it is utmost importance accurately diagnose state rolling bearings. This review comprehensively discusses classical algorithms for fault diagnosis based on vibration signal, focusing three key aspects: data preprocessing, feature extraction, and identification. The main principles, features, application difficulties, suitable occasions various thoroughly examined. Additionally, different methods reviewed compared using Case Western Reserve University bearing dataset. Based current research status diagnosis, future development directions also anticipated. It expected this will serve as a valuable reference researchers aiming enhance their understanding improve technology diagnosis.

Язык: Английский

Процитировано

13

Adaptive weighted generative adversarial network with attention mechanism: A transfer data augmentation method for tool wear prediction DOI
Jianliang He, Yadong Xu, Yi Pan

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2024, Номер 212, С. 111288 - 111288

Опубликована: Март 4, 2024

Язык: Английский

Процитировано

12

A performance-interpretable intelligent fusion of sound and vibration signals for bearing fault diagnosis via dynamic CAME DOI
You Keshun,

Lian Zengwei,

Yingkui Gu

и другие.

Nonlinear Dynamics, Год журнала: 2024, Номер 112(23), С. 20903 - 20940

Опубликована: Авг. 24, 2024

Язык: Английский

Процитировано

12

Systematic Review on Fault Diagnosis on Rolling-Element Bearing DOI

M. Pandiyan,

T. Narendiranath Babu

Journal of Vibration Engineering & Technologies, Год журнала: 2024, Номер unknown

Опубликована: Апрель 10, 2024

Язык: Английский

Процитировано

11

MST-GAT: A multi-perspective spatial-temporal graph attention network for multi-sensor equipment remaining useful life prediction DOI
Liang Zhou, Huawei Wang

Information Fusion, Год журнала: 2024, Номер 110, С. 102462 - 102462

Опубликована: Май 11, 2024

Язык: Английский

Процитировано

11

Digital twin-driven discriminative graph learning networks for cross-domain bearing fault recognition DOI
Yadong Xu,

Qiubo Jiang,

Sheng Li

и другие.

Computers & Industrial Engineering, Год журнала: 2024, Номер 193, С. 110292 - 110292

Опубликована: Июнь 12, 2024

Язык: Английский

Процитировано

11

Multiattention-Based Feature Aggregation Convolutional Networks With Dual Focal Loss for Fault Diagnosis of Rotating Machinery Under Data Imbalance Conditions DOI
Yadong Xu, Sheng Li, Xiaoan Yan

и другие.

IEEE Transactions on Instrumentation and Measurement, Год журнала: 2024, Номер 73, С. 1 - 11

Опубликована: Янв. 1, 2024

Convolutional neural network (CNN)-based intelligent fault diagnosis approaches have showcased remarkable performance in the assessment of machine safety. The data monitored from mechanical systems industries is primarily characterized by class imbalance. Nevertheless, most current CNN-based models are designed under assumption balanced sample distributions, which do not align with prevalent conditions observed real industrial scenarios. To tackle this challenge, a state-of-the-art multiattention-based feature aggregation convolutional (MFACN) developed study. key contributions study outlined as follows: 1) designs an attention-based multiscale module (AMM) and (MFAM) to facilitate comprehensive learning across multiple levels; 2) robust CNN model based on AMM MFAM established. constructed can explore abundant information signals; 3) dual focal loss (DFL) function introduced enhance diagnostic results assess applicability proposed MFACN health state identification, two experiments were conducted using bearing dataset planetary gearbox dataset. experimental unequivocally show that surpasses seven other approaches, especially when dealing imbalanced datasets.

Язык: Английский

Процитировано

9