Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction DOI

Hongyuan Luo,

Deyun Wang,

Jinhua Cheng

и другие.

Resources Policy, Год журнала: 2022, Номер 79, С. 102962 - 102962

Опубликована: Сен. 10, 2022

Язык: Английский

TRNN: An efficient time-series recurrent neural network for stock price prediction DOI
Minrong Lu,

XU Xue-rong

Information Sciences, Год журнала: 2023, Номер 657, С. 119951 - 119951

Опубликована: Ноя. 29, 2023

Язык: Английский

Процитировано

51

A multi-scale analysis method with multi-feature selection for house prices forecasting DOI
Jin Shao, Lean Yu, Nengmin Zeng

и другие.

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112779 - 112779

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Innovative ensemble system based on mixed frequency modeling for wind speed point and interval forecasting DOI
Wendong Yang,

Mengying Hao,

Hao Yan

и другие.

Information Sciences, Год журнала: 2022, Номер 622, С. 560 - 586

Опубликована: Дек. 6, 2022

Язык: Английский

Процитировано

44

Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020–2022 DOI Creative Commons
Cheng Zhang, Nilam Nur Amir Sjarif, Roslina Ibrahim

и другие.

Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, Год журнала: 2023, Номер 14(1)

Опубликована: Сен. 28, 2023

Abstract Accurately predicting the prices of financial time series is essential and challenging for sector. Owing to recent advancements in deep learning techniques, models are gradually replacing traditional statistical machine as first choice price forecasting tasks. This shift model selection has led a notable rise research related applying forecasting, resulting rapid accumulation new knowledge. Therefore, we conducted literature review relevant studies over past 3 years with view aiding researchers practitioners field. delves deeply into learning‐based models, presenting information on architectures, practical applications, their respective advantages disadvantages. In particular, detailed provided advanced such Transformers, generative adversarial networks (GANs), graph neural (GNNs), quantum (DQNNs). The present contribution also includes potential directions future research, examining effectiveness complex structures extending from point prediction interval using scrutinizing reliability validity decomposition ensembles, exploring influence data volume performance. article categorized under: Technologies > Prediction Artificial Intelligence

Язык: Английский

Процитировано

40

Multi-step-ahead stock price prediction using recurrent fuzzy neural network and variational mode decomposition DOI
Hamid Nasiri, Mohammad Mehdi Ebadzadeh

Applied Soft Computing, Год журнала: 2023, Номер 148, С. 110867 - 110867

Опубликована: Сен. 22, 2023

Язык: Английский

Процитировано

36

Stock index forecasting based on multivariate empirical mode decomposition and temporal convolutional networks DOI
Yuan Yao, Zhaoyang Zhang, Yang Zhao

и другие.

Applied Soft Computing, Год журнала: 2023, Номер 142, С. 110356 - 110356

Опубликована: Апрель 30, 2023

Язык: Английский

Процитировано

31

Intelligent forecasting model of stock price using neighborhood rough set and multivariate empirical mode decomposition DOI
Juncheng Bai, Jianfeng Guo,

Bingzhen Sun

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 122, С. 106106 - 106106

Опубликована: Март 14, 2023

Язык: Английский

Процитировано

27

Novel optimization approach for realized volatility forecast of stock price index based on deep reinforcement learning model DOI Open Access
Yuanyuan Yu, Yu Lin,

Xianping Hou

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 233, С. 120880 - 120880

Опубликована: Июнь 22, 2023

Язык: Английский

Процитировано

26

Improving the accuracy of multi-step prediction of building energy consumption based on EEMD-PSO-Informer and long-time series DOI
Feiyu Li, Zhibo Wan, Thomas Koch

и другие.

Computers & Electrical Engineering, Год журнала: 2023, Номер 110, С. 108845 - 108845

Опубликована: Июль 18, 2023

Язык: Английский

Процитировано

25

Stock ranking prediction using a graph aggregation network based on stock price and stock relationship information DOI

Guowei Song,

Tianlong Zhao, Suwei Wang

и другие.

Information Sciences, Год журнала: 2023, Номер 643, С. 119236 - 119236

Опубликована: Май 29, 2023

Язык: Английский

Процитировано

23