Distance Correlation Market Graph: The Case of S&P500 Stocks DOI Creative Commons
Samuel Chinwero Ugwu, Pierre Miasnikof, Yuri Lawryshyn

и другие.

Mathematics, Год журнала: 2023, Номер 11(18), С. 3832 - 3832

Опубликована: Сен. 7, 2023

This study investigates the use of a novel market graph model for equity markets. Our is built on distance correlation instead traditional Pearson correlation. We apply it to S&P500 stocks from January 2015 December 2022. also compare our graphs in literature, those using To further comparison, we build Spearman rank comparisons reveal that non-linear relationships stock returns are not captured by either or observe robust measure detecting complex returns. Networks networks, shown be more responsive conditions during turbulent periods such as COVID crash period.

Язык: Английский

Data-driven stock forecasting models based on neural networks: A review DOI Creative Commons
Wuzhida Bao, Yuting Cao,

Yin Yang

и другие.

Information Fusion, Год журнала: 2024, Номер 113, С. 102616 - 102616

Опубликована: Авг. 5, 2024

As a core branch of financial forecasting, stock forecasting plays crucial role for analysts, investors, and policymakers in managing risks optimizing investment strategies, significantly enhancing the efficiency effectiveness economic decision-making. With rapid development information technology computer science, data-driven neural network technologies have increasingly become mainstream method forecasting. Although recent review studies provided basic introduction to deep learning methods, they still lack detailed discussion on architecture design innovative details. Additionally, latest research emerging large language models structures has yet be included existing literature. In light this, this paper comprehensively reviews literature networks field from 2015 2023, discussing various classic structures, including Recurrent Neural Networks (RNNs), Convolutional (CNNs), Transformers, Graph (GNNs), Generative Adversarial (GANs), Large Language Models (LLMs). It analyzes application achievements these market Moreover, article also outlines commonly used datasets evaluation metrics further exploring unresolved issues potential future directions, aiming provide clear guidance reference researchers

Язык: Английский

Процитировано

12

Forecasting carbon price: A novel multi-factor spatial-temporal GNN framework integrating graph WaveNet and self-attention mechanism DOI
Jin Cao,

Xie Chi,

Yang Zhou

и другие.

Energy Economics, Год журнала: 2025, Номер unknown, С. 108318 - 108318

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

A stock series prediction model based on variational mode decomposition and dual-channel attention network DOI
Yepeng Liu, Siyuan Huang, Xiaoyi Tian

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 121708 - 121708

Опубликована: Сен. 27, 2023

Язык: Английский

Процитировано

21

Multi-scale convolution enhanced transformer for multivariate long-term time series forecasting DOI
Ao Li, Ying Li, Yunyang Xu

и другие.

Neural Networks, Год журнала: 2024, Номер 180, С. 106745 - 106745

Опубликована: Сен. 23, 2024

Язык: Английский

Процитировано

6

Knowledge-based multiplex network reconstruction and influential substructure identification of stock time series: An application to the Chinese A-share market DOI
Xiaoqi Zhang, Peilin Du, Yanqiao Zheng

и другие.

Finance research letters, Год журнала: 2025, Номер unknown, С. 106821 - 106821

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

ComNC: A unified framework for trends prediction integrating node and concept effects DOI
S. Y. Xiao, Qing Li, Xiaoyue Gong

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129721 - 129721

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Enhancing stock ranking forecasting by modeling returns with heteroscedastic Gaussian Distribution DOI
Jiahao Yang, Ran Fang, Ming Zhang

и другие.

Physica A Statistical Mechanics and its Applications, Год журнала: 2025, Номер unknown, С. 130442 - 130442

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Stock Price Forecasting With Integration of Sectoral Behavior: A Deep Auto‐Optimized Multimodal Framework DOI Open Access

Renu Saraswat,

Ajit Kumar

Journal of Forecasting, Год журнала: 2025, Номер unknown

Опубликована: Март 16, 2025

ABSTRACT This study proposes a novel deep auto‐optimized architecture for stock price forecasting that integrates sectoral behavior with individual sentiment to improve predictive accuracy. Traditional prediction models often focus solely on behavior, overlooking the impact of broader trends. The proposed approach utilizes advanced learning models, including gated recurrent units (GRU), bidirectional GRU, long short‐term memory (LSTM), and LSTM, their hybrid ensembles. These are built using Keras functional API auto ML network search technology. current multimodal framework incorporates significantly improving performance metrics. research highlights critical role integrating in models.

Язык: Английский

Процитировано

0

Leveraging BiLSTM-GAT for enhanced stock market prediction: a dual-graph approach to portfolio optimization DOI Creative Commons
Xiaojian Lu, Josiah Poon, Matloob Khushi

и другие.

Applied Intelligence, Год журнала: 2025, Номер 55(7)

Опубликована: Март 31, 2025

Язык: Английский

Процитировано

0

Progressive Dependency Representation Learning for Stock Ranking in Uncertain Risk Contrasting DOI
Li Huang,

Yanzhe Xie,

Qiang Gao

и другие.

Опубликована: Апрель 4, 2025

Язык: Английский

Процитировано

0