Resources Policy, Год журнала: 2022, Номер 79, С. 102962 - 102962
Опубликована: Сен. 10, 2022
Язык: Английский
Resources Policy, Год журнала: 2022, Номер 79, С. 102962 - 102962
Опубликована: Сен. 10, 2022
Язык: Английский
Information Sciences, Год журнала: 2023, Номер 646, С. 119382 - 119382
Опубликована: Июль 18, 2023
Язык: Английский
Процитировано
16Expert Systems with Applications, Год журнала: 2023, Номер 243, С. 122891 - 122891
Опубликована: Дек. 12, 2023
Язык: Английский
Процитировано
15Decision Analytics Journal, Год журнала: 2023, Номер 6, С. 100193 - 100193
Опубликована: Март 1, 2023
An Autoencoder (AE) is an independent feature extractor from data samples and a deep network can be obtained by stacking several AEs. This paper presents novel hybrid stacked Autoencoder-based Deep Kernel-based Random Vector Functional Link Network (DKRVFLN-AE) for forecasting trend analysis of Foreign Exchange (Forex) rates. The proposed model dispenses the random choices weights biases, unlike Network-AE (DRVFLN-AE), using wavelet kernel function with strong fitting capability based on Mercer's condition. A modified metaheuristic Water Cycle Algorithm used to optimize parameters provide DKRVFLN-AE better generalization learning capability, faster execution speed, lower storage space, improved accuracy traditional Extreme Learning Machine models. Applications this new approach predict exchange rates three foreign markets successful results validate its superiority over well-known approaches like Networks, Support Machines, Naive-Bayes, Network.
Язык: Английский
Процитировано
13Applied Intelligence, Год журнала: 2024, Номер 54(7), С. 5417 - 5440
Опубликована: Апрель 1, 2024
Abstract Reinforcement learning is widely used in financial markets to assist investors developing trading strategies. However, most existing models primarily focus on simple volume-price factors, and there a need for further improvement the returns of stock trading. To address these challenges, multi-factor strategy based Deep Q-Network (DQN) with Multi-layer Bidirectional Gated Recurrent Unit (Multi-BiGRU) multi-head ProbSparse self-attention proposed. Our comprehensively characterizes determinants prices by considering various factors such as quality, valuation, sentiment factors. We first use Light Gradient Boosting Machine (LightGBM) classify turning points data. Then, reinforcement strategy, Multi-BiGRU, which holds bidirectional historical data, integrated into DQN, aiming enhance model’s ability understand dynamics market. Moreover, mechanism effectively captures interactions between different providing model deeper market insights. validate our strategy’s effectiveness through extensive experimental research stocks from Chinese US markets. The results show that method outperforms both temporal non-temporal terms returns. Ablation studies confirm critical role LightGBM mechanism. experiment section also demonstrates significant advantages presentation box plots statistical tests. Overall, fully data feature extraction capabilities, work expected provide more precise decision support. Graphical abstract
Язык: Английский
Процитировано
5Resources Policy, Год журнала: 2022, Номер 79, С. 102962 - 102962
Опубликована: Сен. 10, 2022
Язык: Английский
Процитировано
21