Copper price prediction using LSTM recurrent neural network integrated simulated annealing algorithm DOI Creative Commons
Jiahao Chen, Jiahui Yi, Kailei Liu

и другие.

PLoS ONE, Год журнала: 2023, Номер 18(10), С. e0285631 - e0285631

Опубликована: Окт. 30, 2023

Copper is an important mineral and fluctuations in copper prices can affect the stable functioning of some countries' economies. Policy makers, futures traders individual investors are very concerned about prices. In a recent paper, we use artificial intelligence model long short-term memory (LSTM) to predict To improve efficiency model, introduced simulated annealing (SA) algorithm find best combination hyperparameters. The feature engineering problem AI then solved by correlation analysis. Three economic indicators, West Texas Intermediate Oil Price, Gold Price Silver which highly correlated with prices, were selected as inputs be used training forecasting model. different price time periods, namely 485, 363 242 days, chosen for forecasts. forecast errors 0.00195, 0.0019 0.00097, respectively. Compared existing literature, prediction results this paper more accurate less error. research provides reliable reference analyzing future changes.

Язык: Английский

Enhancing state of charge and state of energy estimation in Lithium-ion batteries based on a TimesNet model with Gaussian data augmentation and error correction DOI
Chu Zhang, Yue Zhang, Zhengbo Li

и другие.

Applied Energy, Год журнала: 2024, Номер 359, С. 122669 - 122669

Опубликована: Янв. 28, 2024

Язык: Английский

Процитировано

23

Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction DOI
Guolian Hou, Junjie Wang, Yuzhen Fan

и другие.

Energy, Год журнала: 2023, Номер 286, С. 129640 - 129640

Опубликована: Ноя. 13, 2023

Язык: Английский

Процитировано

44

The Application of a BiGRU Model with Transformer-Based Error Correction in Deformation Prediction for Bridge SHM DOI Creative Commons

Xu Wang,

Xie Guilin,

Youjia Zhang

и другие.

Buildings, Год журнала: 2025, Номер 15(4), С. 542 - 542

Опубликована: Фев. 10, 2025

Accurate deformation prediction is crucial for ensuring the safety and longevity of bridges. However, complex fluctuations pose a challenge to achieving this goal. To improve accuracy, bridge method based on bidirectional gated recurrent unit (BiGRU) neural network error correction proposed. Firstly, BiGRU model employed predict data, which aims enhance modeling capability GRU time-series data through its structure. Then, extract valuable information concealed in error, transformer introduced rectify sequence. Finally, preliminary results are integrated yield high-precision results. Two datasets collected from an actual health monitoring system utilized as examples verify effectiveness proposed method. The show that outperforms comparison terms robustness, generalization ability, with predicted being closer Notably, error-corrected exhibits significantly improved evaluation metrics compared single model. research findings herein offer scientific foundation bridges’ early warning monitoring. Additionally, they hold significant relevance developing models deep learning.

Язык: Английский

Процитировано

1

A novel copper price forecasting ensemble method using adversarial interpretive structural model and sparrow search algorithm DOI
LI Nin, Jiaojiao Li, Qizhou Wang

и другие.

Resources Policy, Год журнала: 2024, Номер 91, С. 104892 - 104892

Опубликована: Март 13, 2024

Язык: Английский

Процитировано

6

A novel non-ferrous metal price hybrid forecasting model based on data preprocessing and error correction DOI
Zhichao He,

J. S. Huang

Resources Policy, Год журнала: 2023, Номер 86, С. 104189 - 104189

Опубликована: Окт. 1, 2023

Язык: Английский

Процитировано

10

How good are different machine and deep learning models in forecasting the future price of metals? Full sample versus sub-sample DOI Creative Commons

A.S. Amirtha Varshini,

Parthajit Kayal, Moinak Maiti

и другие.

Resources Policy, Год журнала: 2024, Номер 92, С. 105040 - 105040

Опубликована: Апрель 30, 2024

This study aims to forecast metal futures in commodity markets, including gold, silver, copper, platinum, palladium, and aluminium, using different machine deep learning models. Prevalent models such as Stacked Long-Short Term Memory, Convolutional LSTM, Bidirectional Support Vector Regressor, Extreme Gradient Boosting, Gated Recurrent Unit are utilized. The model performance is assessed by multiple factors Root Mean Squared Error, Absolute Percentage Error. stands out considering simultaneously, incorporating both Machine Learning Deep models, conducting two sets of experiments with a full sample subsample analysis. In addition, it uses inputs 30- 60-days periods for robustness checks. Error values suggest that efficient on prediction the future prices. However, varies significantly influence choice, period, performance. Therefore, suggests constructing theory based challenging.

Язык: Английский

Процитировано

4

Reliable novel hybrid extreme gradient boosting for forecasting copper prices using meta-heuristic algorithms: A thirty-year analysis DOI

Zohre Nabavi,

Mohammad Mirzehi, Hesam Dehghani

и другие.

Resources Policy, Год журнала: 2024, Номер 90, С. 104784 - 104784

Опубликована: Фев. 17, 2024

Язык: Английский

Процитировано

3

A novel carbon price forecasting model integrating mixed-frequency modeling into the transformer architecture from a multi-factor perspective DOI

Mingyang Ji,

Juntao Du, Pei Du

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер 289, С. 128300 - 128300

Опубликована: Май 30, 2025

Язык: Английский

Процитировано

0

A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices DOI

Jianguo Zhou,

Zhongtian Xu

Resources Policy, Год журнала: 2022, Номер 80, С. 103148 - 103148

Опубликована: Дек. 9, 2022

Язык: Английский

Процитировано

14

MFTM-Informer: A multi-step prediction model based on multivariate fuzzy trend matching and Informer DOI
Lu‐Tao Zhao, Yue Li,

Xue-Hui Chen

и другие.

Information Sciences, Год журнала: 2024, Номер 681, С. 121268 - 121268

Опубликована: Июль 26, 2024

Язык: Английский

Процитировано

3