Entropy-based weighted multi-channel convolutional neural network method for node importance assessment DOI Open Access

JIANG Tingshuai,

Yirun Ruan, Hai Li

и другие.

Acta Physica Sinica, Год журнала: 2025, Номер 74(12), С. 0 - 0

Опубликована: Янв. 1, 2025

Identifying key nodes in complex networks or evaluating the relative node importance with respect to others using quantitative methods is a fundamental issue network science. To address limitations of existing approaches—namely subjectivity assigning weights indicators and insufficient integration global local structural information—this paper proposes an entropy-weighted multi-channel convolutional neural framework (EMCNN). First, parameter-free entropy-based weight allocation model constructed dynamically assign multiple by computing their entropy values, thereby mitigating inherent traditional parameter-setting enhancing objectivity indicator fusion. Second, features are decoupled reconstructed into separate channels form feature maps, which significantly enhance representational capacity structure. Third, leveraging extraction capabilities power attention mechanisms, extracts deep representations from while emphasizing information through attention-based weighting, thus enabling more accurate identification characterization importance. validate effectiveness proposed method, extensive experiments conducted on nine real-world SIR spreading model, assessing performance terms correlation, accuracy, robustness. The Kendall correlation coefficient employed as primary evaluation metric measure consistency between predicted actual influence. Additionally, performed three representative synthetic further test model’s generalizability. Experimental results demonstrate that EMCNN consistently effectively evaluates influence under varying transmission rates, outperforms mainstream algorithms both accuracy. These findings highlight method’s strong generalization ability broad applicability tasks within networks.

Язык: Английский

Finding influential nodes in complex networks by integrating nodal intrinsic and extrinsic centrality DOI
Xiaoyu Zhu,

Rong‐Xia Hao

Chaos Solitons & Fractals, Год журнала: 2025, Номер 194, С. 116278 - 116278

Опубликована: Март 12, 2025

Язык: Английский

Процитировано

1

SHI1I2R competitive information spreading model in online and offline two-layer networks in emergencies DOI
Kang Du, Ruguo Fan

Expert Systems with Applications, Год журнала: 2023, Номер 235, С. 121225 - 121225

Опубликована: Авг. 16, 2023

Язык: Английский

Процитировано

15

Vital spreaders identification synthesizing cross entropy and information entropy with Kshell method DOI
Tianchi Tong, Qian Dong, Jinsheng Sun

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 224, С. 119928 - 119928

Опубликована: Март 21, 2023

Язык: Английский

Процитировано

14

Estimation and update of betweenness centrality with progressive algorithm and shortest paths approximation DOI Creative Commons
Nan Xiang, Qilin Wang,

Mingwei You

и другие.

Scientific Reports, Год журнала: 2023, Номер 13(1)

Опубликована: Окт. 10, 2023

Abstract Betweenness centrality is one of the key measures node importance in a network. However, it computationally intractable to calculate exact betweenness nodes large-scale networks. To solve this problem, we present an efficient CBCA (Centroids based Centrality Approximation) algorithm on progressive sampling and shortest paths approximation. Our firstly approximates by generating network centroids according adjacency information entropy nodes; then constructs error estimator using Monte Carlo Empirical Rademacher averages determine sample size which can achieve balance with accuracy; finally, novel centroid updating strategy density clustering coefficient, effectively reduce computation burden dynamic The experimental results show that our efficiently output high-quality approximations complex

Язык: Английский

Процитировано

14

An improved gravity centrality for finding important nodes in multi-layer networks based on multi-PageRank DOI

Laishui Lv,

Ting Zhang,

Peng Hu

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 122171 - 122171

Опубликована: Окт. 18, 2023

Язык: Английский

Процитировано

14

Mapping the Landscape of Internet Pornography, Loneliness, and Social Media Addiction: A CiteSpace Bibliometric Analysis DOI
Abhishek Prasad,

S. Kadhiravan

International Journal of Mental Health and Addiction, Год журнала: 2024, Номер unknown

Опубликована: Апрель 9, 2024

Язык: Английский

Процитировано

4

Identifying influential users using homophily-based approach in location-based social networks DOI

Zohreh Sadat Akhavan-Hejazi,

Mahdi Esmaeili, Mostafa Ghobaei‐Arani

и другие.

The Journal of Supercomputing, Год журнала: 2024, Номер 80(13), С. 19091 - 19126

Опубликована: Май 25, 2024

Язык: Английский

Процитировано

4

Identifying influential nodes on directed networks DOI

Yan-Li Lee,

Yi-Fei Wen,

Wen-Bo Xie

и другие.

Information Sciences, Год журнала: 2024, Номер 677, С. 120945 - 120945

Опубликована: Июнь 10, 2024

Язык: Английский

Процитировано

4

OlapGN: A multi-layered graph convolution network-based model for locating influential nodes in graph networks DOI
Yasir Rashid, Javaid Iqbal Bhat

Knowledge-Based Systems, Год журнала: 2023, Номер 283, С. 111163 - 111163

Опубликована: Ноя. 6, 2023

Язык: Английский

Процитировано

9

Priority-based two-phase method for hierarchical service composition allocation in cloud manufacturing DOI

Chunhua Tang,

Mark Goh,

Shuangyao Zhao

и другие.

Computers & Industrial Engineering, Год журнала: 2024, Номер 196, С. 110517 - 110517

Опубликована: Авг. 24, 2024

Язык: Английский

Процитировано

3